Low Back Problems

Low Back Problems (27)

US Chiropractic Directory Presents:

Low Back Problems


Low back problems are one of the most prevalent issues that people worldwide suffer. Low back pain has been called lumbago, sciatica and a host of other names, however to the public, it is literally a "pain in the butt." Chiropractic has been safely and effectively helping patents with pain in the back for over 100 years and The US Chiropractic Directory has create a forum of information involving the entire healthcare and scientific community to bring the public evidenced and researched based answers on how and why chiropractic works to help those with low back pain/problems.

A Chiropractic Adjustment Has a Direct Effect of the Pre-Frontal Cortex of the Brain

 

Verifying a positive effect of the chiropractic spinal adjustment on reflexes, memory, coordination and decision making

 

By: Mark Studin

William J. Owens

 

A report on the scientific literature

For most of the 20th century, based upon results in individual chiropractic offices, the profession’s success was founded on a patient-based model. This model drove utilization at predominantly a “grass roots” level and over the last 10-20 years, research has started to give reasons to why patients not only get out of pain, but executive functions such as decision making, anxiety, managing tasks and being able to focus at a higher level are improving. It is these types of results that have driven many patients to appreciate chiropractic as a “miracle cure” while others, mostly from organized medicine and insurers, who in the past have considered it an "invalid claim” because of the lack of credible evidence despite mounting feedback from patients over the last century. Factually, their arguments had merit on many issues in the past, but as research has been published through the years, those arguments are outdated and incorrect.

"Evidence-based behavioral practice (EBBP) entails making decisions about how to promote health or provide care by integrating the best available evidence with practitioner expertise and other resources, and with the characteristics, state, needs, values and preferences of those who will be affected. This is done in a manner that is compatible with the environmental and organizational context. Evidence is comprised of research findings derived from the systematic collection of data through observation and experiment and the formulation of questions and testing of hypotheses" (Evidence-Based Practice, http://en.wikipedia.org/wiki/Evidence-based_practice).

When considering a purely “evidenced-based” approach, it often precludes advances through a doctor’s immediate experiences in “breakthroughs” that has historically saved lives and then set up the research to render the evidence of what doctors have found on an “experiential level.” This is formally termed best medical practice.

“Abest practice is a method or technique that has consistently shown results superior to those achieved with other means and that is used as a benchmark. In addition, a "best" practice can evolve to become better as improvements are discovered. Best practice is considered by some as a business buzzword, used to describe the process of developing and following a standard way of doing things that multiple organizations can use" (Best Practice, http://en.wikipedia.org/ wiki/Best_practice).

Sackett, Rosenberg, Gray, Haynes and Richardson (1996) stated, 

 “Criticism has ranged from evidence based medicine being old hat to it being a dangerous innovation, perpetrated by the arrogant to serve cost cutters and suppress clinical freedom (p. 71)."  They go on to comment “Good doctors use both individual clinical expertise and the best available external evidence, and neither alone is enough. Without clinical expertise, practice risks becoming tyrannized by evidence, for even excellent external evidence may be inapplicable to or inappropriate for an individual patient. Without current best evidence, practice risks becoming rapidly out of date, to the detriment of patients" (Sackett et al, 1996, p. 72).  The point is that the provider plays a huge role and ultimately is the check and balance of this process. Without the provider, the payor becomes the determining factor in the delivery of healthcare by "tying the doctor's hands" with the limitation of evidence. 

They further stated:

“External clinical evidence can inform, but can never replace, individual clinical expertise, and it is this expertise that decides whether the external evidence applies to the individual patient at all and, if so, how it should be integrated into a clinical decision" (Sackett et al, 1996, p. 73).  Lastly, they state, “Evidence based medicine is not restricted to randomized trials and meta-analyses. It involves tracking down the best external evidence with which to answer our clinical questions" (Sackett et al, 1996, p. 73). This is often a process that takes years, preventing the final papers from being published in a timely enough fashion to meet the ever-changing advancement of medicine and the technologies that support the current needs of the patients.  

When considering executive function at the central (brain) level, based upon contemporary literature, we can now go beyond the “best medical practice” model of purely patient feedback and as Sackett et. Al. suggested, add the evidence as verification. In order to better understand how chiropractic plays a role in executive function, we must start at neural plasticity. According to Leung et. Al (2015) Neural plasticity refers to the capacity of our brain to change in response to internal demand and/or external experience. Burgeoning research has corroborated that the neural plastic changes induced in our brains and behaviors are specific to the experiences. [pg. 1] 

Neuroplasticity, also known as brain plasticity or neural plasticity, is an umbrella term that describes lasting change to the brain throughout an individual's life course. The term gained prominence in the latter half of the 20th century, when new research showed that many aspects of the brain can be altered (or are "plastic”) even into adulthood. (https://en.wikipedia.org/wiki/Neuroplasticity) 

This article focuses on the actions and effects of neuroplasticity on the pre-frontal cortex of the brain. According to Lelic et. Al (2016) 

The prefrontal cortex is known to play a vital role in SMI and is also responsible for a number of other functions. The prefrontal cortex is known to be a key structure responsible for the performance of what is known as “executive functions.” Executive function is the mechanism by which the brain integrates and coordinates the operations of multiple neural systems to solve problems and achieve goals based on the ever-changing environment around us. Executive function is considered to be a product of the coordinated operation of various neural systems and is essential for achieving any particular goal. The prefrontal cortex is believed to be the main brain structure responsible for enabling this coordination and control. It requires planning a sequence of subtasks to accomplish a goal, focusing attention on relevant information as well as inhibiting irrelevant distractors, being able to switch attention between tasks monitoring memory, initiation of activity, and responding to stimuli. [pg. 7] 

Lelic et. Al.’s study resulted in two major findings. Firstly, the study reproduced previous findings of somatosensory evoked potential (SEPs) studies that have shown that chiropractic spinal adjusting of dysfunctional spinal segments alters early sensorimotor integration (SMI) of input from the upper limb. The second major finding of this study was that we were able to show, using dipole source localization, that this change in SMI that occurs after spinal manipulation predominantly happens in the prefrontal cortex. The SEP peak showed multiple neural generators including primary sensory cortex, basal ganglia, thalamus, premotor areas, and primary motor cortex. The frontal N30 peak is therefore thought to reflect early SMI.

The current study adds to previous work by not only confirming that spinal manipulation [chiropractic spinal adjustment] of dysfunctional joints decreases the N30 SEP peak amplitude but also demonstrating that this decrease occurs predominantly in one of the known neural generators of N30, that is, the prefrontal cortex. This suggests that, at least in part, the mechanisms by which spinal manipulation improves performance are due to a change in function at the prefrontal cortex.

Lelic et. Al (2016) continued,

The prefrontal cortex is known to play a vital role in SMI and is also responsible for a number of other functions. The prefrontal cortex is known to be a key structure responsible for the performance of what is known as “executive functions.” Executive function is considered to be a product of the coordinated operation of various neural systems and is essential for achieving any particular goal. The prefrontal cortex is believed to be the main brain structure responsible for enabling this coordination and control. It requires planning a sequence of subtasks to accomplish a goal, focusing attention on relevant information as well as inhibiting irrelevant distractors, being able to switch attention between tasks, monitoring memory, initiation of activity, and responding to stimuli. A change in prefrontal activity following chiropractic care may therefore explain and/or link some of the varied improvements in neural function previously observed in the literature, such as improved joint position sense error, reaction time, cortical processing, cortical sensorimotor integration, reflex excitability, motor control, and lower limb muscle strength.

To accomplish the coordinated operations of multiple neural systems and structures, the prefrontal cortex must monitor the activities in other cortical and subcortical structures and control and integrate their operations by sending command signals in a so-called “top-down” manner. This is a complex operation, and the importance of this monitoring, integration, and coordination is highlighted in studies where damage to the prefrontal cortex has been shown to impair the ability to create new and adaptive action programs or choose the best among several equally probable alternatives, despite such individuals displaying normal IQs in most psychological tests, having normal long-term memory functions, and exhibiting normal perceptual, motor, and language skills

 To accomplish the coordinated operations of multiple neural systems and structures, the prefrontal cortex must monitor the activities in other cortical and subcortical structures and control and integrate their operations by sending command signals in a so-called “top-down” manner. This is a complex operation, and the importance of this monitoring, integration, and coordination is highlighted in studies where damage to the prefrontal cortex has been shown to impair the ability to create new and adaptive action programs or choose the best among several equally probable alternatives, despite such individuals displaying normal IQs in most psychological tests, having normal long-term memory functions, and exhibiting normal perceptual, motor, and language skills [43].The change in prefrontal cortex as seen in this study therefore suggests that the altered input from dysfunctional joints that leads to altered processing of somatosensory inputs can influence processing of somatosensory information by the prefrontal cortex.

Chiropractic care, by treating the joint dysfunction, appears to change processing by the prefrontal cortex. This suggests that chiropractic care may as well have benefits that exceed simply reducing pain or improving muscle function and may explain some claims regarding this made by chiropractors.

Although the change in N30 due to chiropractic treatment is an important finding, it is not clear how long this finding lasts. To date, some of the authors of this study have shown that the N30 changes on average are present for at least 20–30 minutes after spinal manipulation. For some subjects, the changes were still evident at 30 minutes after spinal manipulation and we have not yet followed up for longer than 30 minutes, due to the length of the study as is.

The literature has clearly suggested that a chiropractic spinal adjustment has a clear and reproducible effect on brain physiology and function and is consistent with reports from Reed, Pickjar, Sozio and Long (2014) and Gay, Robinson, George, Peristen and Bishop (2014) on a chiropractic spinal adjustment effecting brain function. These results, in addition to chiropractic patient’s feedback since 1895, have combined both “best practice” and evidenced based” models and start to explain through science, why people are experiencing so much more than their beck or neck pain resolving.

References:

  1. Best Practice. (n.d.). In Wikipedia. Retrieved January 3, 2012, fromhttp://en.wikipedia.org/wiki/Best_practice
  2. Evidence-Based Practice. (n.d.). In Wikipedia. Retrieved January 3, 2012, fromhttp://en.wikipedia.org/wiki/Evidence-based_practice
  3. Leung, N. T., Tam, H. M., Chu, L. W., Kwok, T. C., Chan, F., Lam, L. C., ... & Lee, T. (2015). Neural plastic effects of cognitive training on aging brain.Neural plasticity,2015.
  4. Neuroplasticity (2017), Retrieved from: https://en.wikipedia.org/wiki/Neuroplasticity
  5. Lelic, D., Niazi, I. K., Holt, K., Jochumsen, M., Dremstrup, K., Yielder, P., ... & Haavik, H. (2016). Manipulation of dysfunctional spinal joints affects sensorimotor integration in the prefrontal cortex: A brain source localization study.Neural plasticity,2016
  6. Reed, W. R., Pickar, J. G., Sozio, R. S., & Long, C. R. (2014). Effect of spinal manipulation thrust magnitude on trunk mechanical activation thresholds of lateral thalamic neurons.Journal of Manipulative and Physiological Therapeutics, 37(5), 277-286.
  7. Gay, C. W., Robinson, M. E., George, S. Z., Perlstein, W. M., & Bishop, M. D. (2014). Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain. Journal of Manipulative and Physiological Therapeutics, 37(9), 614-627..

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic Care is More Effective in Lowering Disability than Medical Care for Acute and Sub-Acute Low Back Pain

 

By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature

 

By any standard, back pain is one of the most prevalent disabilities plaguing our population. According to Block, 2014, over 100 million Americans experience chronic pain with common painful conditions including back pain, neck pain, headaches/migraines, and arthritis, in addition to other painful conditions such as diabetic peripheral neuropathy, etc... In a large study in 2010, 30.7% of over 27,000 U.S. respondents reported an experience of chronic, recurrent pain of at least a 6-month duration. Half of the respondents with chronic pain noted daily symptoms, with 32% characterizing their pain as severe (≥7 on a scale ranging from 0 to 10). Chronic pain has a broad impact on emotional well-being and health-related quality of life, sleep quality, and social/recreational function. (pg. 1)

 

According to Schneider et al., 2015 “low back pain is among the most common medical elements an important public health issue. Approximately 50% of the United States working – age adults experience low back pain each year with a quarter of US adults reported in episode back pain in the previous three months. Back pain is the most common cause of disability for persons younger than 45 years old and one of the most common reasons for office visits to primary care physicians in the United States as well as Europe and Australia.” (pg. 2009)

 

In chiropractic, although chiropractic’s scope is significantly beyond back pain, based upon the sheer volume of low back pain sufferers, there simply aren’t enough chiropractors to manage this “epidemic sized” condition. In addition, chiropractors as a profession do not want to be labeled as solely “low back pain doctors.” Although the authors firmly agree, we also must acknowledge while treating mechanical spine pain (no fracture, tumor or infection) that the formal health care system has fallen short and in its effort, has contributed to the opiate epidemic.  Healthcare in the United States has had a myopic focus on “anatomical” sources of spine pain such as herniated disc and degenerative disc disease while ignoring the impact that faulty biomechanics have on spine pain and disability.  When it comes to the biomechanics of the spine, it is the responsibility of the chiropractic profession, based upon training and outcomes to lead the nation in its diagnosis, management and treatment.  When we consider both anatomical and biomechanical spine conditions are significant contributors to the spine pain and disability epidemic in the United States, we must understand its full impact and the standard healthcare system’s (allopathic) inability to manage the biomechanical side. 

 

Block, 2014 continued “In addition to the pervasive personal suffering associated with this disease, chronic pain (author’s note: where low back pain is one of the most significant contributors) has a substantial negative financial impact on the economy. Direct office visits, diagnostic testing, hospital care, and pharmacy costs are only a portion of the picture, with combined medical and pharmacy costs averaging $5,000 annually per individual. Chronic pain results in a significant economic burden on the healthcare system, with estimated costs ranging from $560 to $635 billion 2010 dollars, more than the annual cost of other priority health conditions including cardiovascular disease, cancer, and diabetes. Moreover, the estimated annual costs of the workplace impact of pain range from $299 to $335 billion from absenteeism and reduced productivity.” (pgs. 1-2) These statistics help us to understand that “management” of spine pain is a critical component of cost reduction since the costliest portion of healthcare services is when a patient enters the system.  Continued mismanagement of mechanical spine pain causes patients to move in and out of disability status. That reentry is what drives up cost, chiropractic is the 3rd largest health profession in the United States and the largest with the education to lead the diagnosis and management of mechanical spine pain.

 

When we compare who is better educated to manage mechanical back pain cases, we also must conclude as a result, who is better educated to successfully treat those cases based upon outcomes. In this comparison, we will consider the education of chiropractic vs. traditional musculoskeletal education and competency as well as treatment outcomes.

 

In a recent article written by Humphreys, Sulkowski, McIntyre, Kasiban, and Patrick (2007), they stated, “In the United States, approximately 10% to 25% of all visits to primary care medical doctors are for MSK [musculoskeletal] complaints, making it one of the most common reasons for consulting a physician...Specifically, it has been estimated that less than 5% of the undergraduate and graduate medical curriculum in the United States and 2.26% in Canadian medical schools is devoted to MSK medicine” (p. 44).

 

Musculoskeletal complaints have a major impact on the healthcare system and although many patients believe that traditional providers are highly trained, recent publications relating to basic competency have shown otherwise.  For example, the authors cited another study stating, Humphreys et al., 2007 continues by stating, “A study by Childs et alon the physical therapists’ knowledge in managing MSK conditions found that only 21% of students working on their master’s degree in physical therapy and 25% of students working on their doctorate degree in physical therapy achieved a passing mark on the BCE [Basic Competency Evaluation]” (p. 45). 

The authors continued by reporting, “The objective of this study was to examine the cognitive (knowledge) competency of final-year chiropractic students in MSK [musculoskeletal] medicine" (p. 45).  "The typical chiropractic curriculum consists of 4,800 hours of education composed of courses in the biological sciences (i.e., anatomy, embryology, histology, microbiology, pathology, laboratory diagnosis, biochemistry, nutrition, and psychology), chiropractic sciences, and clinical sciences (i.e., clinical diagnosis, neurodiagnostic, ortho-rheumatology, radiology, and psychology).  As the diagnosis, treatment, and management of MSK disorders are the primary focus of the undergraduate curriculum as well as future clinical practice, it seems logical that chiropractic graduates should possess competence in basic MSK medicine” (Humphreys et al., 2007, p. 45).

The following results were published in this paper for the Basic Competency Examination and various professions that are in the front line of the diagnosis and treatment of musculoskeletal conditions.  In Table 2 on page 47, the following results were shown when the passing score was established at 73% or greater:

Recent medical graduates (18%), medical students, residents, and staff physicians (20.7%), osteopathic students (29.6%) physical therapy (MSc level, 21%), physical therapy (doctorate level, 26%), chiropractic students (51.5%). 

In Table 2 on page 47, the following results were show when the passing score was established at 70% or greater. 

Recent medical graduates (22%), medical students, residents, and staff physicians (NA), osteopathic students (33%) physical therapy (MSc level, NA), physical therapy (doctorate level, NA), chiropractic students (64.7%). 

According to Frank Zolli DC, former Dean at the University of Bridgeport, College of Chiropractic, “Fundamental to the training of doctors of chiropractic is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and students receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. It is so important to practice these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education, requires a curriculum which enables students to be proficient in neuromusculoskeletal evaluation, treatment and management. In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE) in 4 separate parts including clinical evaluations. It is therefore mandatory for a chiropractor to know the structure and function of the human body,  the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education.” As a result, the doctor of chiropractic has an expertise in the diagnosis and management of biomechanical musculoskeletal disorders that the traditional health care system is lacking. Chiropractic offers significant insight where traditional health care has no answers.

 

When it comes to direct influence of the chiropractic adjustment on spine pain patients, a 2005 study by DeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms. This study validates the reasoning behind why people with severe muscle spasms in the low back respond well to chiropractic care which in turn is shown to prevent future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications. This study renders evidence that chiropractic spinal adjusting provides a direct nervous system and physiologic response to the human body. 

 

In a recently published case study and literature review in the New England Journal of Medicine, Deyo and Mirza (2016) had published a case study and literature review on the diagnosis and treatment of lumbar disc herniation with sciatica. What is useful in this publication is the review of the literature in basic, easy to use format highlighting the most common treatments associated in lumbar disc herniation with sciatica.  

Regarding the chiropractic adjustment, the authors stated “A randomized trial of chiropractic manipulation for sub-acute or chronic “back-related leg pain” (without confirmation of nerve-root compression on MRI) showed that manipulation [author’s note: Chiropractic spinal adjustment]  was more effective than home exercise with respect to pain relief at 12 weeks (by a mean 1-point decrease on a pain-intensity scale on which scores ranged from 0 to 10, with higher scores indicating greater severity of pain) but not at 1 year. This is important since early intervention of chiropractic care will reduce early dependency on pain medication. In addition, a randomized trial involving patients who had acute sciatica with MRI-confirmed disk protrusion showed that at 6 months, significantly more patients who underwent chiropractic manipulation had an absence of pain than did those who underwent sham manipulation (55% vs. 20%).  Neurologic complications in the lumbar spine, including worsened disk herniation or the cauda equina syndrome, have been reported anecdotally, but they appear to be extremely rare.” (pg 1768) 

In relationship to counseling versus supervised exercise, the authors reported,“A systematic review of five randomized trials showed that patients who participated in supervised exercise had greater short-term pain relief than patients who received counseling alone, but this reduction in pain was small and these patients did not have a long-term benefit with respect to reduced pain or disability.” (pg. 1768) 

Concerning oral steroids, the paper reported, “Randomized trials show no significant advantage of systemic glucocorticoid (steroid) therapy over placebo with respect to pain relief or reduced rates of subsequent surgical intervention, and they show little, if any, advantage with respect to improvement in physical function.” (pg. 1767) 

The authors commented on opioid medication by stating,“Data from randomized trials to support the use of opioids in patients with sciatica are lacking.   Systematic reviews suggest that opioids have slight short-term benefits with respect to reduced back pain.  Convincing evidence of benefits of long-term use is lacking, and there is growing concern regarding serious long-term adverse effects such as fractures and opioid overdose and abuse.” (pg. 1767) 

Focusing on spinal injection therapy the paper continues by reporting, “A systematic review showed that patients with radiculopathy who received epidural glucocorticoid injections had slightly better pain relief (by 7.5 points on a 100-point scale) and functional improvement at 2 weeks than patients who received placebo. There were no significant advantages at later follow-up and no effect on long-term rates of surgery.” (pg. 1768)

This report serves as a nice general guideline for the primary care [conservative] management of lumbar disc herniation with sciatica.  We see that in addition to any anatomical correction there is a positive response to biomechanical interventions for which the properly trained and credentialed chiropractor is an important provider.  

Cifuentes et al., 2011 stated, “Given that chiropractors are proponents of health maintenance care, we hypothesize that patients with work-related LBP [low back pain] who are treated by chiropractors would have a lower risk of recurrent disability because this specific approach would be used.Conversely, similar patients treated by other providers would have higher recurrence rates because the general approach did not include maintaining health, which is a key component to prevent recurrence” (Cifuentes, Willetts, & Wasiak, 2011, p. 396). 

This research is unique and comprehensive in that it tracked injured workers’ compensation patients in multiple states and it reviewed claims dated between January 1, 2006 and December 31, 2006 including 894 cases out of a pool of 11,420 claims of non-specific low back pain cases.  (The states were chosen because the patients had the ability to select their doctors on their own and were not mandated a provider.)   

Relating to the results, the authors report, “In our study, after controlling for demographics and severity indicators, the likelihood of recurrent disability due to LBP for recipients of services during the health maintenance care period by all other provider groups was consistently worse when compared with recipients of health maintenance care by chiropractors. Care from chiropractors during the disability episode (“curative”), during the health maintenance period (main exposure variable, “preventative”), and the combination of both (curative and preventive) was associated with lower disability recurrence HRs” (p. 403). This article validates chiropractic's role in the prevention of the recurrence of back pain in patients with chronic spine disorders.  

When analyzing why, the reasons are evident and based upon the literature. A chiropractic spinal adjustment reduces verifiable bio-neuro-mechanical failures (commonly known as vertebral subluxation in our profession) at the spinal level.  Non-steroidal anti-inflammatory drugs do not and there is no “spontaneous recovery,” only less pain with the underlying biomechanical failures persisting awaiting Wollf’s law to adversely remodel the spine leading to certain increased permanent disability over time. Therefore, if “literature based outcomes” “ruled the day” (as they should in a reasonable world void of politics and financial interest) at the legislative and reimbursement levels, then we would be a healthier society and spend far less money while avoiding unnecessary side effects and increasing the potential for significantly greater disabilities in the future.

 

References:

  1. Block, C. K. (2014). Examining neuropsychological sequelae of chronic pain and the effect of immediate-release oral opioid analgesics (Order No. 3591607). Available from ProQuest Dissertations & Theses Global. (1433965816). Retrieved from http://search.proquest.com/docview/1433965816?accountid=1416
  1. Humphreys, B. K., Sulkowski, A., McIntyre, K., Kasiban, M., & Patrick, A. N. (2007). An examination of musculoskeletal cognitive competency in chiropractic interns. Journal of Manipulative and Physiological Therapeutics, 30(1), 44-49.
  2. Deyo, R. A., & Mirza, S. K. (2016). Herniated Lumbar Intervertebral Disk. New England Journal of Medicine, 374(18), 1763-1772.
  3. Cifuentes, M., Willetts, J., & Wasiak, R. (2011). Health maintenance care in work-related low back pain and its association with disability recurrence. Journal of Occupational and Environmental Medicine, 53(4), 396-404.
  1. Schmale, G. A. (2005). More evidence of educational inadequacies in musculoskeletal medicine. Clinical Orthopaedics and Related Research, 437, 251-259.
  2. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study. Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.
  3. Goldberg, H., Firtch, W., Tyburski, M., Pressman, A., Ackerson, L., Hamilton, L., Avins, A. L. (2015). Oral steroids for acute radiculopathy due to a herniated lumbar disk: A randomized clinical trial.Journal of the American Medical Association (JAMA), 313(19), 1915-1923.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic’s Role in Decreasing Premature Death with Associated Back Pain

 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature      

 

In the United Kingdom, Field and Newell (2016) reported that back pain accounts for 4.8% of all social benefit claims with overall costs reaching $7 billion pounds or $9.35 billion US dollars. Boyles (2016) reported in the Feb. 13 issue of The Journal of the American Medical Association. After adjustment for inflation, total estimated medical costs associated with back and neck pain increased by 65% between 1997 and 2005, to about $86 billion a year… Yet during the same period, patients reported more disability from back and neck pain, including more depression and physical limitations. MD Lynx on Family Medicine reported “Nearly four million people in Australia suffer from low back pain and the total cost of treatment exceeds $1 billion a year.(https://www.mdlinx.com/family-medicine/top-medical-news/article/2017/03/08/7076443?utm_source=in-house&utm_medium=message&utm_campaign=mh-fm-march17)

 

When we consider mortality and the causes, most only attribute causality to the last diagnosis or pathology associated with the immediate cause of death. In recent literature, there have been studies studying the effects of long-term pain and all-causes of death inclusive of cancers and cardiovascular issues and are now considering these co-morbidities, rather than “stand-alone causes.”  

 

Docking et. Al (2015) reported:

 “This study confirmed previous findings regarding the relationship between pain and excess mortality. Further, we have shown that among older adults, this association is specific to disabling pain and to woman. Clinicians should be aware not only of the short-term implications of disabling back pain, but also the long-term effects.” (pg. 466)

 

 

The Family Medicine, MD Lynx reported on March 8, 2017:

New research from the Faculty of Health Sciences finds that older people with back pain have a 13 per cent higher chance of dying prematurely. The 600,000 older Australians who suffer from back pain have a 13 per cent increased risk of dying from any cause, University of Sydney research has found. Published in the European Journal of Pain, the study of 4390 Danish twins aged more than 70 years investigated whether spinal pain increased the rate of all–cause and disease–specific cardiovascular mortalityOur study found that compared to those without spinal pain, a person with spinal pain has a 13 per cent higher chance of dying every year. This is a significant finding as many people think that back pain is not life–threatening,” said senior author Associate Professor Paulo Ferreira, physiotherapy researcher from the University’s Faculty of Health Sciences.

 

The Family Medicine, MD Lynx also reported on March 8, 2017:

 “Medications are mostly ineffective, surgery usually does not offer a good outcome.”

 

It was reported byShaheed, Mahar, Williams, and McLachlin(2014) that out of the 4,336 studies they identified,concluded that,

“None of the trials evaluating [medical] advice or bed rest reported statistically and clinically important effects at any time point…The effects of advice on disability are similar to those for pain, with pooled results showing no clinical significant effect for the short and long-terms” (Shaheed, 2014, p. 5). “Pooled results from 2 studies on bed rest showed a statistically significant negative effect of bed rest in the immediate term…” (Shaheed et al., 2014,p. 10).

 

Shaheed et al. (2014) continued

 “There is no convincing evidence of effectiveness for any intervention available [with] OTC (over the counter drugs) or advice in the management of acute low back pain” (p. 11). The authors did report, “In the intermediate term, results from one of the studies involving referral to an allied HCP [health care provider] and reinforcement of key messages at follow-up visits showed significant effects in the intermediate and long-terms” (Shaheed et al., 2014, p. 12).

 

A 2005 study by DeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms. This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications. The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back-pain patients, chiropractic has already helped 87% of the same population.

 

In a study by Leeman, Peterson, Schmid, Anklin, and Humphrys(2014), there is further successful evidence of the effects of mechanical back pain, both acute and chronic pain with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients. In this study, the acute onset patient (the patient’s pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year marks following the onset of the original pain. Although one might argue that the patient would have gotten better with no treatment, it was reported that after two weeks of no treatment, only 36% of the patients felt better and at 12 weeks, up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to his/her normal life without pain, drugs or surgery.

 

Again, this is an environment where research has concluded that medicine has poor choices based upon outcomes for what they label “nonspecific low back pain.” The results indicate that chiropractic has defined this “nonspecific lesion” as a “bio-neuro-mechanical lesion” also known as the chiropractic vertebral subluxation and the evidence outlined on these pages, combined with the ever-growing body of outcome studies verify that medicine can reverse this epidemic by considering chiropractors as “primary spine care providers” or the first option for referral for everything spine short of fracture, tumor or infection.

 

The research is starting to show the far “reaching effects of chronic low back pain and the evidence has supported that chiropractic must take a lead role in the management of this population of patients. Based upon the evidence, anything short of that is a public health risk.

  

References:

  1. Field J., Newell D. (2016) Clinical Outcomes In a Large Cohort of Musculoskeletal Patients Undergoing Chiropractic Care In the United Kingdom: A Comparison of Self and National Health Service Referral Routes, Journal of Manipulative and Physiological Therapeutics, 39(1), pgs. 54-62
  2. Boyles S., $86 Billion Spent on Back, Neck Pain, WebMD (2016) Retrieved from:http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain
  3.  Is Back Pain Killing Us? (2017) Retrieved from: https://www.mdlinx.com/family-medicine/top-medical-news/article/2017/03/08/7076443?utm_source=in-house&utm_medium=message&utm_campaign=mh-fm-march17
  4. Docking, R. E., Fleming, J., Brayne, C., Zhao, J., Macfarlane, G. J., & Jones, G. T. (2015). The relationship between back pain and mortality in older adults varies with disability and gender: Results from the Cambridge City over75s Cohort (CC75C) study.European Journal of Pain,19(4), 466-472.
  5. Abdel Shaheed, C., Mahar, C. G., Williams, K. A., & McLachlin, A. J. (2014). Interventions available over the counter and advice for acute low back pain: Systematic review and meta-analysis. The Journal of Pain,15(1), 2-15.
  6. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study. Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.
  7. Leeman, S., Peterson, C., Schmid, C., Anklin, B., Humphrys, K. (2014). Outcomes of acute and chronic patients with magnetic resonance imaging-confirmed symptomatic lumbar disc herniations receiving high-velocity, low-amplitude, spinal manipulative therapy: A prospective observational cohort study with one year follow up. Journal (3), 155-163.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic as the Solution for Mechanical Spine Failure and Failed Back Surgery.

By: William J. Owens DC, DAAMLP

Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

A report on the scientific literature. 

 

The latest CDC statistics show that in 2012, 54 out of 100 people had self-reported musculoskeletal conditions.  By way of comparison, that is six times more than self-reported cases of cancer, double that of respiratory disease and one-third more than circulatory disorders.  If we extrapolate that to a more current population in the United States of 321 million, that equates to 173 million people reporting musculoskeletal problems in 2012.  Many of these are spine patients who suffer long-term without any type of biomechanical assessment or functional case management. 

In 2013, Itz, Geurts, van Kleef, and Nelemans reported, “Non-specific low back pain [LBP] is a relatively common and recurrent condition with major medical and economic implications for which today there is no effective cure” (p. 5).  The idea that spinal pain has a “natural history” resulting in a true resolution of symptoms is a myth and the concept that spine pain should only be treated in the acute phase for a few visits has no support in the literature.  We don’t address cardiovascular disease in this manner, i.e. wait until you have a heart attack to treat, we don’t follow this procedure with dentistry, i.e. wait until you need a root canal to treat, and we certainly don’t handle metabolic disorders such as diabetes in this way, i.e. wait until you have diabetic ulcers or advanced vascular disease to treat.  Why does healthcare fall short with spinal conditions in spite of the compelling literature that states the opposite in treatment outcomes?

The front lines of medical care for spine-related pain is typically the prescription of pain medication, particularly at the emergency care level, and then if that doesn’t work, a referral is made to physical therapy. If physical therapy is unsuccessful, the final referral is to a surgeon.  If the surgeon does not intervene with surgery, then the diagnosis becomes “non-specific back pain” and the patient is given stronger medication since there is nothing the surgeon can do.  In those surgical interventions that result in persistent pain, a commonly reported problem, there is an ICD-10 diagnosis for failed spine surgery, M96.1 

A recent article Ordia and Vaisman (2011) described this syndrome a bit further stating the following, “We propose that these terms [post laminectomy syndrome or failed back syndrome] should be replaced with Post-surgical Spine Syndrome (PSSS)” (p. 132).  They continued by reporting, “The incidence of PSSS may be reduced by a meticulous neurological examination and careful patient selection.  The facet and sacroiliac joints should always be examined, particularly when the pain is predominantly in the lower back, or when it radiates only to the thigh or groin and not below the knee” (Orida & Vaisman, 2011, p. 132). The authors finally stated, “Adherence to these simple guidelines can result in a significant reduction in the pain and suffering, as also the enormous financial cost of PSSS” (Orida & Vaisman, 2011, p. 132).  What they are referring to is a careful distinction between an “anatomical” versus a “biomechanical” cause of the spine pain. 

According to Mulholland (2008), “[Surgery] Spinal fusion became what has been termed the “gold standard” for the treatment of mechanical low back pain, yet there was no scientific basis for this” (p. 619). He continued, “However whilst that fusion [surgery] may be very effective in stopping movement, it was deficient in relation to load transfer” (Mulholland, 2008, p. 623). He concluded, “The concept of instability as a cause of back pain is a myth. The clinical results of any procedure that allows abnormal disc loading to continue are unpredictable” (Mulholland, 2008, p. 624).  Simply put, surgery does not correct the underlying biomechanical failure or the cause of the pain.

When a biomechanical assessment is lacking, the patient’s pain persists and allopathic medicine is focused on “managing the pain” vs. correcting the underlying biomechanical lesion/pathology/imbalance, the medication of choice at this point in care has been opioid analgesics.  Back in 2011, the CDC reported, “Sales of OPR quadrupled between 1999 and 2010. Enough OPR were prescribed last year [2010] to medicate every American adult with a standard pain treatment dose of 5 mg of hydrocodone (Vicodin and others) taken every 4 hours for a month” (p. 1489).  That was 6 years ago, which was when people began to feel that treating musculoskeletal pain with narcotics was trending in the wrong direction.  Now, in 2016, we can see there is a problem of epidemic proportions to the point that MDs are changing how they refer spine patients for diagnosis and treatment. 

Dowell, Haegerich, and Chou (2016), along with the CDC, published updated guidelines relating to the prescription of opioid medication:

Opioid pain medication use presents serious risks, including overdose and opioid use disorder. From 1999 to 2014, more than 165,000 persons died from overdose related to opioid pain medication in the United States. In the past decade, while the death rates for the top leading causes of death such as heart disease and cancer have decreased substantially, the death rate associated with opioid pain medication has increased markedly.

a recent study of patients aged 15–64 years receiving opioids for chronic noncancer pain and followed for up to 13 years revealed that one in 550 patients died from opioid-related overdose at a median of 2.6 years from their first opioid prescription, and one in 32 patients who escalated to opioid dosages >200 morphine milligram equivalents (MME) died from opioid-related overdose. (p. 2)

Clearly, there needs to be a nationwide standard for the process by which patients with spine pain are handled, including academic and clinical leadership on spinal biomechanics.  The only profession that is poised to accomplish such a task is chiropractic.

In a recent study by Houweling et al. (2015), the authors reported, “The purpose of this study was to identify differences in outcomes, patient satisfaction, and related health care costs in spinal, hip, and shoulder pain patients who initiated care with medical doctors (MDs) vs those who initiated care with doctors of chiropractic (DCs) in Switzerland” (p. 477).  This is an important study which continually demonstrates maintaining access to chiropractic care, for both acute and chronic pain is critical.  We can also see from current utilization statistics that chiropractic care is underutilized on a major scale.  The authors also state, “Although patients may be comanaged with other medical colleagues or paramedical providers (eg, physiotherapists), treatment for the same complaint may vary according to the type of first-contact provider. For instance, MDs tend to use medication, including analgesics, muscle relaxants, and anti-inflammatory agents, for the treatment of acute nonspecific spinal pain, whereas DCs favor spinal manipulative therapy as the primary treatment for this condition” (Houweling et al., 2015, p. 478).  The continue by stating “This study showed that spinal, hip, and shoulder pain patients had modestly higher pain relief and satisfaction with care at lower overall cost if they initiated care with DCs, when compared with those who initiated care with MDs” (Houweling et al., 2015, p. 480).  Overall, when taking cost into consideration, “Mean total spinal, hip, and shoulder pain-related health care costs per patient during the 4-month study period were approximately 40% lower in patients initially consulting DCs compared with those initially consulting MDs” (Houweling et al., 2015, p. 481).  The authors concluded, “The findings of this study support first-contact care provided by DCs as an alternative to first-contact care provided by MDs for a select number of musculoskeletal conditions” (Houweling et al., 2015, p. 481).

Bases on the literature and outcome studies, backed up with 121 years of doctors of chiropractic and their patients’ testimonies, the time has never been better for the chiropractic profession to move into treating the 93% of the population that is not under care. Chiropractic must be moved from the accepted standard of biomechanical processes in the laboratory to the standard of care for spine beyond fracture, tumor or infection across all professions, inclusive of physical therapy. The outcomes overwhelmingly support that anything less perpetuates the epidemic of failed back treatments.   

References

1. Centers for Disease Control and Prevention. (2015). National hospital discharge survey. Retrieved from: http://www.cdc.gov/nchs/nhds.htm

2. United States Census Bureau. (n.d.). Quick facts, United States. Retrieved from https://www.census.gov/quickfacts/

3. Itz, C. J., Geurts, J. W., van Kleef, M., & Nelemans, P. (2013). Clinical course of nonspecific low back pain: A systematic review of prospective cohort studies set in primary care. European Journal of Pain, 17(1), 5-15.

4. Ordia, J., & Julien Vaisman. (2011). Post-surgical spine syndrome. Surgical Neurology International, 2, 132.

5. Mulholland, R. C. (2008). The myth of lumbar instability: The importance of abnormal loading as a cause of low back pain. European Spine Journal, 17(5), 619-625.

6. Centers for Disease Control and Prevention. (2011). Vital signs: Overdoses of prescription opioid pain relievers - United States, 1999--2008. Morbidity and Mortality Weekly Report, 60(43), 1487-1492.

7. Dowell, D., Haegerich, T. M., & Chou, R. (2016). CDC guideline for prescribing opioids for chronic pain - United States, 2016. JAMA, 315(15), 1624-1645.

8. Houweling, T. A., Braga, A. V., Hausheer, T., Vogelsang, M., Peterson, C., & Humphreys, B. K. (2015). First-contact care with a medical vs chiropractic provider after consultation with a swiss telemedicine provider: Comparison of outcomes, patient satisfaction, and health care costs in spinal, hip, and shoulder pain patients. Journal of Manipulative and Physiological Therapeutics, 38(7), 477-483.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic vs. Physical Therapy

 in Treating Low Back Pain

with Spinal Adjustments vs. Exercise Rehabilitation

 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature

 

In the United Kingdom, Field and Newell (2016) reported that back pain accounts for 4.8% of all social benefit claims with overall costs reaching $7 billion pounds or $9.35 billion US dollars. Boyles (2016) reported that “Researchers from the University of Washington, Seattle, found that the nation's dramatic rise in expenditures for the diagnosis and treatment of back and neck problems has not led to expected improvements in patient health. Their study appears in the Feb. 13 issue of The Journal of the American Medical Association. After adjustment for inflation, total estimated medical costs associated with back and neck pain increased by 65% between 1997 and 2005, to about $86 billion a year… Yet during the same period, patients reported more disability from back and neck pain, including more depression and physical limitations.

 

“We did not observe improvements in health outcomes commensurate with the increasing costs over time," lead researcher Brook I. Martin, MPH, and colleagues wrote. "Spine problems may offer opportunities to reduce expenditures without associated worsening of clinical outcomes." (http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain) Part of the explanation for the rise in cost of treatment of low back pain is the utilization of physical therapy by allopath’s (medical primary care providers and medical specialists) as the primary option for the treatment of low back pain vs. the literature verified better alternative of chiropractic based upon outcome studies.  

 

Through the years, both chiropractors and physical therapists have concurrently utilized exercise rehabilitation as a modality to treat low back pain. As a rule, the chiropractic profession has utilized exercise rehabilitation as an adjunct to the spinal adjustment where in physical therapy, it has been the main focus of the treatment plan. In addition, other passive modalities to mitigate pain, such as electrical stimulation and/or hydro/cryotherapy has been utilized as an adjunct to each professions main treatment. As a rule, exercise rehabilitation is a crucial adjunct to the treatment of low back disorders as it adds necessary motion to the joint and helps balance muscle tone required to create a biomechanically stabilized joint over time.

However, Ianuzzi and Khalsa (2005) wrote (pg. 674)

           

Facet joint capsule strain magnitudes during simulated high velocity low amplitude spinal manipulations were within the range of motion occurred during maximum physiological motions, indicating that the procedure is biomechanically safe and provide a stimulus that is likely sufficient to stimulate facet joint capsule neurons. However, physiological motions of the lumbar spine by themselves (e.g. Exercise) are generally ineffective in treating low back pain, suggesting that facet joint capsule strain magnitude alone would be insufficient in providing a novel stimulus for facet joint capsule afferents.

 

The high strain rates that occurred during spinal manipulation could provide a novel “yet biomechanically safe” stimulus for afferents innervating given facet joint capsule. Alternatively, during spinal manipulation, the relative magnitudes (patterns) of facet joint capsule strain was in a region of the lumbar spine may be unique, which could result in a novel pattern of facet joint capsule mechanoreceptor firing in the spinal region and subsequently a novel stimulus to the central nervous system.

 

Simply put, the facet joint capsules are comprised of ligaments where the mechanoreceptors are located. A spinal manipulation (chiropractic spinal adjustment) stimulates the neurons in the capsule where exercise (physiological motion) does not. In addition, it has been shown that chiropractic spinal adjustments are safe to the joint capsule and ligaments that comprise the capsule.

 

References:

 

  1. Field J., Newell D. (2016) Clinical Outcomes In a Large Cohort of Musculoskeletal Patients Undergoing Chiropractic Care In the United Kingdom: A Comparison of Self and National Health Service Referral Routes, Journal of Manipulative and Physiological Therapeutics, 39(1), pgs. 54-62
  2. Boyles S., $86 Billion Spent on Back, Neck Pain, WebMD (2016) Retrieved from:http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain
  3. Ianuzzi A., Khalsa P. (2005) High Loading Rate During Spinal Manipulation Produces Unique Facet Joint Capsule Strain Patterns Compared With Axial Rotations, Journal of Manipulative and Physiological Therapeutics 28 (9), 673-687

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic Outcome Studies on Treatment of Fragmented/Sequestered and Extruded Herniated Discs and Radicular Pain

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

 

Citation: Studin M., Owens W. (2016) Chiropractic Outcomes on Fragmented/Sequestered and Extruded Discs and Radicular Pain, American Chiropractor, 34 (11) 26, 28, 30, 32-33

 

Research Review:

 

Disc herniations are a common diagnostic entity in chiropractic practices with varied etiologies ranging from auto accidents to sports injuries to slips and falls and any other type of trauma that can cause the disc to tear. Treatment has varied from doing nothing to conservative care to opiates and the surgery and in the recent past, opiates and surgery have been the treatment of choice leaving a population of too many addicts and too often failed surgeries. This is not to suggest that all surgeries or opiates are unnecessary, but if drugs and/or surgery can be avoided it is an obvious choice.

 

 

When considering disc issues, Fardone et. Al (2014) defined the nomenclature that has been widely accepted both in academia and clinically and should be adhered to, to ensure that reporting and visualizing pathology is consistent with the morphology visualized. In the past, this has been a significant issue as many have called a bulge a protrusion, a prolapse or herniation. In today’s literature Fardone’s document has resolved much of those problems.

 

Herniated Disc: “Herniated disc is the best general term to denote displacement of disc material. The term is appropriate to denote the general diagnostic category when referring to a specific disc and to be inclusive of various types of displacements when speaking of groups of discs. The term includes discs that may properly be characterized by more specific terms, such as ‘‘protruded disc’’ or ‘‘extruded disc.’’ The term ‘‘herniated disc,’’ as defined in this work, refers to localized displacement of nucleus, cartilage, fragmented apophyseal bone, or fragmented annular tissue beyond the intervertebral disc space. ‘‘Localized’’ is defined as less than 25% of the disc circumference. The disc space is defined, craniad and caudad, by the vertebral body end plates and, peripherally, by the edges of the vertebral ring apophyses, exclusive of the osteophyte formation. This definition was deemed more practical, especially for the interpretation of imaging studies, than a pathologic definition requiring identification of disc material forced out of normal position through an annular defect.” (page E1454)

 

 

Protruded Disc: “Disc protrusions are focal or localized abnormalities of the disc margin that involve less than 25% of the disc circumference. A disc is ‘‘protruded’’ if the greatest dimension between the edges of the disc material presenting beyond the disc space is less than the distance between the edges of the base of that disc material that extends outside the disc space. The base is defined as the width of the disc material at the outer margin of the disc space of origin, where disc material displaced beyond the disc space is continuous with the disc material within the disc space. The term ‘‘protrusion’’ is only appropriate in describing herniated disc material, as discussed previously.” (page E1455)

 

Extruded Disc: “The term ‘‘extruded’’ is consistent with the lay language meaning of material forced from one domain to another through an aperture and with reference to a disc, the test of extrusion is the judgment that, in at least one plane, any one distance between the edges of the disc material beyond the disc space is greater than the distance between the edges of the base measured in the same plane or when no continuity exists between the disc material beyond the disc space and that within the disc space.” (page E1455)

 

Extruded Sequestered, Fragmented Disc or Migrated Disc: “Extruded disc material that has no continuity with the disc of origin may be characterized as ‘‘sequestrated.” A sequestrated disc is a subtype of ‘‘extruded disc’’ but, by definition, can never be a ‘‘protruded disc.’’ Extruded disc material that is displaced away from the site of extrusion, regardless of continuity with the disc, may be called ‘‘migrated,’’ a term that is useful for the interpretation of imaging studies because it is often impossible from images to know if continuity exists. (page E1455)

 

Bulging Disc: “The terms ‘‘bulge’’ or ‘‘bulging’’ refer to a generalized extension of disc tissue beyond the edges of the apophyses. Such bulging involves greater than 25% of the circumference of the disc and typically extends a relatively short distance, usually less than 3 mm, beyond the edges of the apophyses. ‘‘Bulge’’ or ‘‘bulging’’ describes a morphologic characteristic of various possible causes. Bulging is sometimes a normal variant (usually at L5–S1), can result from an advanced disc degeneration or from a vertebral body remodeling (as consequent to osteoporosis, trauma, or adjacent structure deformity), can occur with ligamentous laxity in response to loading or angular motion, can be an illusion caused by posterior central subligamentous disc protrusion, or can be an illusion from volume averaging (particularly with CT axial images).” (page E1455)

 

It was reported by McMorland, Suter, Casha, du Plessis, and Hurlbertin (2010) that over 250,000 patients a year undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study. 

 

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

 

Although the previous report concluded that a chiropractic spinal adjustment is an effective treatment modality for herniated disc a more recent study (Lehman ET. Al. (2014), further clarifies the improvement with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients.

 

In this study the acute onset patient (the pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one-year mark after the onset of the original complaint. Although one might argue that the patient would have gotten better with no treatment it was reported that after two weeks of no treatment only 36% of the patients felt better and at 12 weeks up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to their normal life without pain, drugs or surgery.

 

             Chiropractic Care and Herniated Discs with Leg Pain

2 Week Improvement

1 Month Improvement

3 Month Improvement

80.6%

84.6%

94.5%

 

In a prospective outcome study, Ehrler et. Al. (2016) studied outcomes of chiropractic care on both extruded and sequestered disc patients. They reported “The purpose of this study was to evaluate whether specific MRI features, specifically axial location and type (bulge, protrusion, extrusion, sequestration) of a herniated disc, are associated with the short and long term outcomes of patients treated with high-velocity, low-amplitude SMT specifically to the level of the symptomatic, MRI confirmed, herniation. This is the first study to address this question. Studies searching for predictors of improvement after treatment in previous low back pain patients did not target type and axial location of the herniated discs.Additionally, patients with disc sequestration were not excluded from this study.” (Page 196)

 

Ehrler et. Al. continued “Over 77% of patients with disc sequestration reported clinically relevant “improvement” compared to 66.7% of patients with extrusion. Although not statistically significant, 100% of patients with sequestration reported clinically relevant improvement at the 3-month data collection time point and at all data collection time points a higher proportion of patients with sequestration reported clinically relevant improvement. There were no significant differences for disc herniation location either by spinal level or in the axial plane for any of the data collection time points. This now calls into question the traditional thinking that disc sequestrations are more dangerous than herniations that remain attached to the parent disc and are more likely to require surgery. However, the studies reporting this did not consider chiropractic spinal manipulative therapy as a treatment option.” (page 197)

 

I would like to leave you with a last and seemingly unrelated statement.  I felt it was important to add this at the end since many of our critics negatively portray the safety of chiropractic care.  This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified” (Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

 

References:

  1. Fardon, D. F., Williams, A. L., Dohring, E. J., Murtagh, F. R., Gabriel Rothman, S. L., & Sze, G. K. (2014). Lumbar disc nomenclature: Version 2.0. Recommendations of the combined task forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine, 39(24), E1448-E1465.
  1. Leeman S., Peterson C., Schmid C., Anklin B., Humphryes B., (2014) Outcomes of Acute and Chronic Patients with Magnetic Resonance Imaging-Confirmed Symptomatic Lumbar Disc Herniations Receiving High-Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study With One-Year Follow Up, Journal of Manipulative and Physiological Therapeutics, 37 (3) 155-163
  2. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiscectomy for sciatica? A prospective randomized clinical study. Journal of Manipulative and Physiological Therapeutics, 33 (8) 576-584
  3. Ehrler M., Peterson C., Leeman S., Schmid C., Anklin B., Humphreys B. K., (2016) Symptomatic, MRI Confirmed, Lumbar Disc Herniations: A Comparison of Outcomes Depending on the Type and Anatomical Axial Location of the Hernia in Patients Treated with High-Velocity, Low-Amplitude Spinal Manipulation, Journal of Manipulative and Physiological Therapeutics, 39 (3) 192-199
  4. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic vs. Medical Advice, Bed Rest, Natural History/Resolution and Over-the-Counter Drugs for Low Back Pain

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature

 

Mechanical spine pain is any back pain excluding tumor or infection and has been called low back pain, chronic low back pain, acute low back pain and non-specific low back pain. This is a societal problem and according to Panjabi (2006) “…70-85% of the population in industrialized societies experience low back pain at least once in their lifetime... The total cost of low back pain has been estimated to exceed 50 billion dollars per year in the USA” (p. 668)” Low back pain is historically one of the most prevalent conditions successfully treated in chiropractic offices and still is being questioned in too many medical conversations in spite of the evidence. This lack of referrals to the chiropractic profession by too many medical providers has contributed to perpetuating this reversible epidemic. Day, Yeh Franko, Ramirez, and Krupat (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine.

 

           Schmale (2005) reported:

 

Incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system. (p. 251).

 

With continued evidence of lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical (subluxation or bio-neuro-mechanical lesions) orientation, the question becomes, “Which profession has the educational basis, training and clinical competence to manage these cases?”  Let’s take a closer look at chiropractic education as a comparison.

 

Fundamental to the training of doctors of chiropractic, according to the American Chiropractic Association, is 4,200 hours (similar to medical doctors and osteopaths) and students receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctors of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. This material is so important to a chiropractic practice that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education, requires a curriculum which enables students to be “proficient in neuromusculoskeletal evaluation, treatment and management.” In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result, students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internships.

 

It was reported by Shaheed, Mahar, Williams, and McLachlin (2014) that out of the 4,336 studies they identified, there was only 13 found to be relavent, leaving this an area that still needs more review. However, in the entire study it was concluded that, “None of the trials evaluating [medical] advice or bed rest reported statistically and clinically important effects at any time point…The effects of advice on disability are similar to those for pain, with pooled results showing no clinical significant effect for the short and long-terms” (Shaheed, 2014, p. 5). “Pooled results from 2 studies on bed rest showed a statistically significant negative effect of bed rest in the immediate term…” (Shaheed et al., 2014, p. 10).

 

Shaheed et al. (2014) concluded that “There is no convincing evidence of effectiveness for any intervention available [with] OTC (over the counter drugs) or advice in the management of acute low back pain” (p. 11). The authors did report, “In the intermediate term, results from one of the studies involving referral to an allied HCP [health care provider] and reinforcement of key messages at follow-up visits showed significant effects in the intermediate and long-terms” (Shaheed et al., 2014, p. 12).

 

A 2005 study by DeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms. This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications. The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back pain patients, chiropractic has already helped 87% of the same population.

 

In a study by Leeman, Peterson, Schmid, Anklin, and Humphrys (2014), there is further successful evidence of the effects of mechanical back pain, both acute and chronic pain with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients. In this study, the acute onset patient (the patient’s pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year marks following the onset of the original pain. Although one might argue that the patient would have gotten better with no treatment, it was reported that after two weeks of no treatment, only 36% of the patients felt better and at 12 weeks, up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to his/her normal life without pain, drugs or surgery.

 

Again, this is an environment where research has concluded that medicine has poor choices based upon outcomes for what they label “nonspecific low back pain.” The results indicate that chiropractic has defined this “nonspecific lesion” as a “bio-neuro-mechanical lesion” also known as the chiropractic vertebral subluxation and the evidence outlined on these pages, combined with the ever growing body of outcome studies verify that medicine can reverse this epidemic by considering chiropractors as “primary spine care providers” or the first option for referral for everything spine short of fracture, tumor or infection.

 

References:

 

  1. Panjabi, M. M. (2006). A hypothesis of chronic back pain: Ligament subfailure injuries lead to muscle control dysfunction. European Spine Journal, 15(15), 668-676.
  2. Day, C. S., Yeh A. C., Franko, O., Ramirez, M., & Krupat, E. (2007). Musculoskeletal medicine: An assessment of the attitudes and knowledge of medical students at Harvard Medical School. Academic Medicine, 82(5), 452-457
  3. Chiropractic Education, American Chiropractic Association (2016) Retrieved from: http://www.acatoday.org/Patients/Why-Choose-Chiropractic/Chiropractic-Qualifications
  4. Abdel Shaheed, C., Mahar, C. G., Williams, K. A., & McLachlin, A. J. (2014). Interventions available over the counter and advice for acute low back pain: Systematic review and meta-analysis. The Journal of Pain, 15(1), 2-15.
  5. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study. Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.
  6. Leeman, S., Peterson, C., Schmid, C., Anklin, B., Humphrys, K. (2014). Outcomes of acute and chronic patients with magnetic resonance imaging-confirmed symptomatic lumbar disc herniations receiving high-velocity, low-amplitude, spinal manipulative therapy: A prospective observational cohort study with one year follow up. Journal(3), 155-163.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Spinal Fusion vs. Chiropractic for Mechanical Spine Pain

 

By. Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

A report on the scientific literature

 

As Chien and Bajwa (2008) pointed out, one of the most common maladies in our society today is back pain and 97% of the time, the pain is considered mechanical back pain. That is pain that arises from things other than fractures, tumors or infection and is one of the leading causes of visits to primary care medical doctors. Peterson, Bolton and Humphreys (2012), Baliki, Geha, Apkarian, and Chialvo (2008), and Apkarian et al. (2004) all agreed that at any given time, upwards of 10% of the population suffers from back pain and upwards of 80% of those back pain sufferers have chronic problems.  For pain to be considered chronic, it must persist for greater than 6 months.

 

Mulholland reported (2008)

The cause and hence the best treatment of “mechanical” low back pain remains unsolved, despite nearly a century of endeavour. It is now generally accepted that some form of failure of the intervertebral disc is central to causation. In the latter half of the twentieth century, failure of the disc leading to abnormal movement, popularly called instability, legitimised the use of fusion as treatment. However, the unpredictable results of fusion, which did not improve despite progressively more rigid methods of fusion cast doubts on the concept that back pain was movement related and that stopping movement was central to its treatment. (Pg. 619)

 

The only reason for fusion appeared to be that, other treatments had failed, that it was reasonable from the psychological viewpoint, and that instability was present. Instability is defined elsewhere in the book as increased abnormal movement, and this is illustrated by x-rays purporting to show abnormal rotations and various types of abnormal tilt. He accepts that such appearances may be entirely painless, but in the patient with back pain they identify the causative level, and fusion is justified. (Pg. 620)

However, whilst that fusion may be very effective in stopping movement, it was deficient in relation to load transfer. (pg. 623)

 

The reason load transfer is critical to normal spinal biomechanics (function) is one of remodelling and the prevention of premature and unnecessary advanced arthritic changes. Based upon Wolff’s Law, with abnormal load, the entire joint will remodel in the body’s innate goal of creating homeostasis from a structural perspective.

 

 

In support of the above consideration, Mulholland concluded:

Abnormal movement of a degenerated segment may be associated with back pain but is not causative. The concept of instability as a cause of back pain is a myth. The clinical results of any procedure that allows abnormal disc loading to continue are unpredictable.

If it is accepted that load transfer disturbance is the central issue in mechanical back pain, then treatment can be directed to remedy this. Fusion will only do this if it reliably takes over the loading function of the disc. Movement preserving procedures such as “flexible stabilization” or an artificial disc are compatible with preserving motion but with an artificial disc bony integration between plate and vertebrae would appear to be essential, not just to stop movement, but to transfer load normally. (pg. 624)

 

 

It was reported by McMorland, Suter, Casha, du Plessis, and Hurlbert in 2010 that approximately 250,000 patients annually undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc (mechanical spine) issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study. 

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

 

Although the previous report concluded that a chiropractic spinal adjustment is an effective treatment modality for mechanical spine pathology, a more recent study by Leemann et al. (2014), further clarifies the improvement with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients.

 

In this study, the acute onset patient (the pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year marks following the onset of the original pain. Although one might argue that the patient would have gotten better with no treatment, it was reported that after two weeks of no treatment, only 36% of the patients felt better and at 12 weeks, up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to his/her normal life without pain, drugs or surgery.

 

Although the literature clearly indicates chiropractic as a superior choice for mechanical back pain for both disability and pain indicating function has normalized and that spinal fusion creates permanent abnormal load transfers leading to a higher risk of premature arthritis and spinal biomechanical failures, the consideration that was omitted in Mulholland’s paper was that of aberrant neurological sequella. The arbiter for surgery vs. chiropractic care that should be strongly considered is where the delay in surgery will possibly cause permanent neurological damage.

 

Clinically, regardless of the mechanical failure, (including, but not limited to disc extrusions both migrated and sequestered) and/or the presentation of exquisite pain, should the patient present with intact motor and sensory function upon examination, there is less consideration of adverse issues developing from chiropractic care that will take time in the rehabilitation process. However, if there is significant motor and/or sensory loss indicating compression or significant abutment of the cord or root, then delaying surgery can increase the risk of creating long-term neurological damage. In either scenario, while managing these types of patients, the chiropractor should consider co-managing with a spine surgeon who is versed in chiropractic care and contemporary literature that has objectified both treatment outcomes.

 

References:

  1. Chien, J., J., & Bajwa, Z. H. (2008). What is mechanical spine pain and how best to treat it? Current Pain and Headaches Report, 12(6), 406-411
  2. Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neurosciences,28(6) http://www.jneurosci.org/content/28/6/1398.full
  3. Apkarian, V., Sosa, Y., Sonty, S., Levy, R., Harden, N., Parrish, T., & Gitelman, D. (2004). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. The Journal of Neuroscience, 24(46), 10410-10415.
  4. Mulholland R. (2008) The myth of lumbar instability: the importance of abnormal loading as a cause of low back pain, European Spine Journal 17 (5) 619-625
  5. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiskectomy for sciatica? A prospective randomized clinical study. . Journal of Manipulative and Physiological Therapeutics, 33(8), 576-584.
  6. Leeman S., Peterson C., Schmid C., Anklin B., Humphrys K. (2014) Outcomes of Acute and Chronic Patients with Magnetic Resonance Imaging Confirmed Symptomatic Lumbar Disc Herniations Receiving High Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study with One Year Follow Up, Journal(3), 155-163.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic vs. Medicine:

Who is More Cost Effective

& Renders Better Outcomes for Spine?

 

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

When we consider mechanical spine issues, we need to consider problems exclusive of fracture, tumor or infection. According to Houweling Et. Al. (2015) back pain effects 43% of the population over the course of a year. In addition, 33% of that group reported that their symptoms led to reduced productivity at work. In Switzerland, this accounted for 3% of their gross domestic products and equates to $14 Billion in US dollars. Chiropractic’s forte` and focus historically has been mechanical spine issues and when considering who the first provider that should be consulted, one needs to examine the scientific evidence based upon outcomes so that rhetoric has no place in utilization and the facts control the argument and direction of the patient.

Simply put, where should a patient go first because it has been proven conclusively that it is the best place to get better. From an insurance carrier and legislative perspective, the question goes one step further and examines the cost of care and which is the best solution in a cost-effective care-path realizing that often the government is the insurer or risk taker and even private carriers have a fiduciary responsibility to their stockholders to ensure a profitable return, while offering the best possible solutions for their insureds.  

 

Day Et. Al. (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine (pg. 452). Schmale (2005) reported “Incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (pg. 251).  

 

With continued evidence of lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical [Subluxation] orientation, the question becomes which profession has the educational basis, training and clinical competence to manage these cases?  Let’s take a closer look at chiropractic education as a comparison. Fundamental to the training of doctors of chiropractic according to the American Chiropractic Association is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. So important to practice are these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education requires a curriculum which enables students to be “proficient in neuromusculoskeletal evaluation, treatment and management.” In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result, students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internship.

 

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral education as referenced above.

A 2005 study byDeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms.This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications.

The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back pain patients, chiropractic has already helped 87% of the same population. We also know that chiropractic is one of the safest treatments currently available in healthcare for spinal treatment and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(p. 5).

Houweling Et. Al (2015) concluded “Patients who initially consulted with MDs were significantly less likely to be satisfied with the care received and the results of care compared with those who initially consulted DCs” (p. 480) and Adjusted mean costs per patient were significantly lower in patients initiating care with DCs compared with those initiating care with MDs. (p.480) “The findings of this study pertaining to patient satisfaction were in line with previous research comparing chiropractic care to medical care for back pain, which found that chiropractic patients are typically more satisfied with the services received than medical patients.” (p.481)

Houweling Et. Al (2015) continued “Mean total spinal, hip, and shoulder pain-related health care costs per patient during the 4-month study period were approximately 40% lower in patients initially consulting DCs compared with those initially consulting MDs. The reason for this difference was a lower use of health care services other than first-contact care in patients initially consulting DCs compared with those initially consulting MDs. Previous observational studies comparing medical and chiropractic care in terms of health care costs per patient have shown opposing results. Two studies conducted in the United States found that patients with low back pain treated in chiropractic clinics incurred higher costs than patients treated in medical clinics. One possible reason for these opposing findings is that differences were brought about by the methods of determining costs. In the studies conducted in the United States, costs were determined by chart audit, whereas in the present study, cost determinations were based on an insurance database review of all health care services used for the conditions investigated including the cost of visits to other health care providers.” Pg. 481

Perhaps the most telling point of Houweling Et. Al (2015) results were “Restrictive models of care in which patients are required to contact a medical provider before consulting a chiropractic provider may be counterproductive for patients experiencing the musculoskeletal conditions investigated and possibly others. In addition to potentially reducing health care costs, direct access to chiropractic care may ease the workload on MDs, particularly in areas with poor medical coverage and hence enabling them to focus on complex cases. The minority of patients with complex health problems initially consulting a chiropractic provider would be referred to, or co-managed with, a medical provider to provide optimal care. (p.481)

The above model not only suggests, but verifies that chiropractic should be the first choice or the primary spine care provider freeing up an already overburdened medical primary care provider’s office where they are not qualified to manage mechanical spine issues as reported above. This also helps resolve some of the issues in more rural regions where there is a shortage of primary care medical providers and positions the public to realize better outcomes and serves the insurers by ensuring lower costs.

References:

  1. Houweling, T, Braga A., Hausheer T., Vogelsang M., Peterson C., Humphreys K. (2015) First-Contact Care with a Medical vs. Chiropractic Provider After Consultation with a Swiss Telemedicine Provider: Comparison of Outcomes, Patient Satisfaction, and Health Care Costs in Spinal, Hip, and Shoulder Pain Patients, Journal of Manipulative and Physiologic Therapeutics, 38(7), 477-483
  2. Day C., Yeh A., Franko O., Ramirez M., Krupat E. (2007) Musculoskeletal Medicine: An Assessment of the Attitudes of Medical Students at Harvard Medical School, Academic Medicine 82: 452-457
  3. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study.Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.
  4. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Back Pain: Who Should Be Seen First & WHY

Chiropractor vs. Medical Primary Care Doctor

A report on the scientific literature 


By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

Reference: Studin M., Owens W. (2015) Back Pain: Who Should Be Seen First & WHY, Chiropractor vs. Medical Primary Care Doctor, American Chiropractor 37 (9) 50, 52, 54, 56

 

 

 

As Chien and Bajwa(2008)pointed out, one of the most common maladies in our society today is back pain and 97% of the time, the pain is considered mechanical back pain. That is pain that arises from things other than fractures, tumors or infection and is one of the leading causes of visits to primary care medical doctors. Peterson, Bolton and Humphreys (2012), Baliki, Geha, Apkarian, and Chialvo (2008), and Apkarian et al. (2004) all agreed that at any given time, upwards of 10% of the population suffers from back pain and upwards of 80% of those back pain sufferers have chronic problems.  For pain to be considered chronic, it must persist for greater than 6 months.

 

The problems that exist regarding chronic back pain are compounded by an unsuspecting public that historically, initially seeks care from their primary care medical providers who do not have strong grasps on mechanical back pain. According to Apkarian et al. (2004), back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made. In other words, virtually every time a patient goes to see his/her primary care doctor as a result of his/her chronic back pain, the doctor does not know the cause of the problem, yet treats an area that he/she is not equipped to diagnose.  

 

When we look at the human population on a larger scale and from a medical perspective, we see there is a deficit in spinal education with resultant negative sequellae of chronic back pain.  The above conclusion was drawn by querying allopathic (medical) doctors who have little to no training or experience in treating mechanical back pain, AKA spinal dysfunction of biomechanical origin, AKA chiropractic subluxation complex.  Raissi, Mansoon, Madani, and Rayegani (2006) reported regarding medical providers. Most respondents (92.2%) believed that musculoskeletal education had not been sufficient in general practitioner training courses. Of the respondents, 56.8% had visited at least one disabled patient during the previous month, while 11% had visited more than 10 in the same period, but 84.3% had not studied disabilities. Musculoskeletal physical examination was the most needed educational field cited by general practitioners” (Raissi et al., 2006, p. 167).

 

Day, Yeh, Franko, Ramirez, and Krupat (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine.  Schmale (2005) reported, “…incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 (57/122) have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (p. 251). 

 

With continued evidence of a lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical (subluxation) orientation, the question becomes, “Which profession has the educational basis, training and clinical competence to manage these cases?”  Let’s take a closer look at chiropractic education as a comparison. 

 

Fundamental to the training of doctors of chiropractic is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and students receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. It is so important to practice these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education, requires a curriculum which enables students to be proficient in neuromusculoskeletal evaluation, treatment and management. In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result, students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internships.

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral educationas referenced above.

 

A 2005 study byDeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms.This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications.

 

The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back pain patients, chiropractic has already helped 87% of the same population. We also know that chiropractic is one of the safest treatments currently available in healthcare for spinal treatment and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(p. 5).

 

References:

 

1. Chien, J., J., & Bajwa, Z. H. (2008). What is mechanical spine pain and how best to treat it? Current Pain and Headaches Report, 12(6), 406-411

2. Peterson, C. K., Bolton, J., & Humphreys, B. K. (2012). Predictors of improvement in patients with acute and chronic low back pain undergoing chiropractic treatment. Journal of Manipulative and Physiological Therapeutics, 35(7), 525-533.

3. Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neurosciences, 28(6) http://www.jneurosci.org/content/28/6/1398.full

 4. Apkarian, V., Sosa, Y., Sonty, S., Levy, R., Harden, N., Parrish, T., & Gitelman, D. (2004). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. The Journal of Neuroscience, 24(46), 10410-10415.

5. Raissi, G. R., Mansoon, K., Madani, P., & Rayegani, S. M. (2006). Survey of general practitioners’ attitudes toward physical medicine and rehabilitation. International Journal of Rehabilitation Research, 29(2), 167-170.

6. Day, C. S., Yeh, A. C., Franko, O., Ramirez, M., & Krupat, E. (2007). Musculoskeletal medicine: An assessment of the attitudes of medical students at Harvard Medical School. Academic Medicine, 82(5), 452-457.

7. Schmale, G. A. (2005). More evidence of educational inadequacies in musculoskeletal medicine. Clinical Orthopaedics and Related Research, 437, 251-259.

 8. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study.Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.

 9. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Page 1 of 2

 

 

doctorspiad

AOC-ads-june-2016-02

AOC-ads-june-2016-01

More Research