Neck Problems

Neck Problems (38)

US Chiropractic Directory Presents:

Neck Problems


Neck problems are one of the most prevalent issues that people worldwide suffer. Neck pain has been called torticollis, stiff neck and a host of other names, however to the public, it is literally a "pain in the neck." Chiropractic has been safely and effectively helping patents with pain in the neck for over 100 years and The US Chiropractic Directory has create a forum of information combining the entire healthcare and scientific community to bring the public evidenced and researched based answers on how and why chiropractic works to help those with neck pain/problems.

Chiropractic & Central Afferent Inhibition:

A Chiropractic Care Path & Mechanism for Chronic Pain, Tremors, Spatial and Inhibitory Distortion

 

By Mark Studin

William J. Owens

Michael Barone

A report on the scientific literature 

 

Although it is unusual in the literature to place a disclaimer in the beginning of an article, we want to ensure that our reporting is not inflammatory since the foundation of this article was written with the following limitation in our primary literary source, Haavik, Niazi, Holt and Murphy (2017) reported:

 

This study was not designed to test the efficacy of chiropractic care for treating chronic pain; therefore, conclusions about efficacy cannot be drawn from our findings. The study did not include randomization with an adequate control group, thus limiting the interpretations that can be made about the changes in pain observed in the trial. Causation cannot be claimed. (pg. 135)

 

Although Haavik, et al. reported limitations in their study, the results cannot be overlooked or minimized, particularly when those results match what doctors working within a “Best Practice Model” (the patient and doctor feedback component) have been reporting for decades. Additionally, in the clinical setting, this information provides direction to practitioners searching for answers although the mechanisms are not yet fully understood. Results often don’t mandate detailed knowledge of the mechanism and that is the primary reason why both “evidenced based” and “best practice” models must be embraced and combined (pure literature results with doctor and patient feedback or experiences) as a matter of public health.

 

When we consider central afferent neurological input, the inability to inhibit those signals leads to sensorimotor disturbances that are found in the chronicity of many chronic pain conditions, essential tremors, dystonia and other central spatial and temporal mismatches. In addition, we must consider to the long-term negative sequalae of those conditions, such as brain shrinkage.

 

Baliki, Geha, Apkarian and Chialvo (2008) reported:

 

Recent studies have demonstrated that chronic pain harms cortical areas unrelated to pain, long-term pain alters the functional connectivity of cortical regions known to be active at rest, i.e., the components of the “default mode network” (DMN). This DMN is marked by balanced positive and negative correlations between activity in component brain regions. In several disorders, however this balance is disrupted. Studying with fMRI [functional MRI] a group of chronic back pain patients and healthy controls while executing a simple visual attention task, we discovered that chronic back pain patients, despite performing the task equally well as controls, displayed reduced deactivation in several key default mode network regions. These findings demonstrate that chronic pain has a widespread impact on overall brain function, and suggest that disruptions of the default mode network may underlie the cognitive and behavioral impairments accompanying chronic pain.” (pg. 1398)

 

“The existence of a resting state in which the brain remained active in an organized manner, is called the ‘default mode of brain function. The regions exhibiting a decrease in activity during task performance are the component members of the “default-mode network” (DMN), which in concerted action maintain the brain resting state. Recent studies have already demonstrated that the brain default mode network is disrupted in autism, Alzheimer’ disease, depression, schizophrenia and attention deficit hyperactivity disorder, suggesting that the study of brain resting activity can be useful to understand disease states as well as potentially provide diagnostic information.”  (pg. 1398)

 

This is important since for the first time we are starting to see a published correlation between spinal function, chronic pain and central nervous system changes.  This is what our founders have observed yet were unable to prove.

 

“Thus, the alterations in the patient’s brain at ‘rest’ can result in a different default mode network organization. In turn, potential changes in the default-mode network activity could be related to symptoms (other than pain) commonly exhibited by chronic pain patients, including depression and anxiety, sleep disturbances, and decision-making abnormalities, which also significantly diminish their quality of life… chronic pain patients display a dramatic alteration in several key default-mode network regions, suggesting that chronic pain has a widespread impact on overall brain function” (pg. 1398)

 

This information is pointing to the fact that a doctor of chiropractic should be involved in the triage and treatment of these patients and part of a long-term spinal care program. 

 

Baliki Et. Al (2008) continued “Consistent with extensive earlier work examining visuospatial attention tasks, dominant activations were located in posterior parietal and lateral prefrontal cortices, whereas deactivations occurred mainly within Pre-Frontal Cortex and Posterior Cingulate/Cuneate Cortexes. Although activations in chronic back pain patients’ and controls’ brains were similar, chronic back pain patients exhibited significantly less deactivations than healthy subjects in Pre-Frontal Cortex, amygdala, and Posterior Cingulate/Cuneate Cortexes.  The focus was on identifying differences in the way chronic back pain patients’ brains process information not related to pain. This is the first study demonstrating that chronic back pain patients exhibit severe alterations in the functional connectivity between brain regions implicated in the default mode network. It seems that enduring pain for a long time affects brain function in response to even minimally demanding attention tasks completely unrelated to pain. Furthermore, the fact that the observed task performance, compared with healthy subjects, is unaffected, whereas the brain activity is dramatically different, raises the question of how other behaviors are impaired by the altered brain activity” (pg. 1399).

 

“However, the disruption of functional connectivity observed here with increased chronic back pain duration may be related to the earlier observation of brain atrophy increasing with pain duration also in chronic back pain patients. Patient’s exhibit increased pre-frontal cortex activity in relation to spontaneous pain, in addition to dorsolateral prefrontal cortex atrophy. Therefore, the decreased deactivations described here may be related to the dorsolateral pre-frontal cortex /pre-frontal cortex mutual inhibitory interactions perturbed with time. If that is the case, it will support the idea of a plastic, time-dependent, reorganization of the brain as patients continue to suffer from chronic back pain. Mechanistically, the early stages of this cortical reorganization may be driven by peripheral and spinal cord events, such as those that have been documented in animal models of chronic pain, whereas later events may be related to coping strategies necessary for living with unrelenting pain. It is important to recognize that transient but repetitive functional alterations can lead to more permanent changes. Accordingly, long term interference with normal activity may eventually initiate plastic changes that could alter irreversibly the stability and subsequently the conformation of the resting state networks” (pg. 1401).

 

Essential Tremors which, according to Wikipedia

 

Essential tremor (ET, also referred to as benign tremor, familial tremor, or idiopathic tremor) is the most common movement disorder; its cause is unknown. It typically involves a tremor of the arms, hands or fingers but sometimes involving the head, vocal cords or other body parts during voluntary movements such as eating and writing.[1] It is distinct from Parkinson's disease—and often misdiagnosed as such—although some individuals have both conditions. Essential tremor is commonly described as an action tremor (i.e., it intensifies when one tries to use the affected muscles) or postural tremor (i.e., present with sustained muscle tone) rather than a resting tremor, such as is seen in Parkinson’s, which is usually not included among its symptoms. (https://en.wikipedia.org/wiki/Essential_tremor)

 

Restuccia, Valeriani, Barba, Le Pera, Bentivoglio, Albanese and Tonali (2003) reported:

 

...our present data seem to indicate that somatomotor cortical areas play an important role in generating ET. This finding can be important in the future understanding of its pathophysiologic mechanisms, as well as in its management. (pg. 127)

 

This study suggests that somatosensory cortical areas plays an important role, therefore the afferents “feeding” that region is critical in normalizing function of the cortex a that region. Another negative sequela of aberrant input.

When we consider one potential etiology of maladaptive plastic changes in the brain that can cause chronic pain, essential tremors, brain shrinkage and a host of other maladies, regulatory control of the impulses must be considered and interfered with. The lack of gating (inhibition) will lead to an overflow of impulses and crate a negative cascade that can lead to chronic and often permanent changes. Haavik, Niazi, Holt and Murphy (2017) reported:

 

Thus, distorted sensory information is thought to disturb SMI (sensorimotor integration) and impair accurate motor control. In normal circumstances, 2 inputs that engage the sensory system have a reciprocally inhibitory action that gates the total amount of signal at all central levels, spatially and temporally limiting the amount of input engaging the CNS. This is thought to prevent sensory “overflow.” The defective gating may cause an input-output mismatch in specific motor programs, and such mismatches in motor programs may in themselves lead to production of distorted sensory information and issue of less than ideal motor commands. In this way, the chronicity of the problem can be maintained via a self-perpetuating mechanism. The reduced frontal N30 SEP (somatosensory evoked potential) peak ratio observed in the current study after 12 weeks of chiropractic care may reflect a normalization of pain-induced central maladaptive plastic changes and may reflect one mechanism for the improvement of functional ability reported following chiropractic adjustment or manipulation. (pg. 134)

 

The N30 ratio change represented on average a 37.4% decrease following the 12 weeks of chiropractic care. The N30 MU (median-ulnar) amplitude changes following chiropractic care represented an 18.0% decrease in amplitude compared with baseline (pg. 131) Alongside this change in the N30 SEP ratio, the subjects reported a decrease in both current pain and average pain over the last week. A control period of 2 weeks of no intervention resulted in no significant changes in any SEP peak ratio. (pg. 134)

 

When considering care paths for this population of patients, the following was reported by Haavik, Niazi, Holt and Murphy (2017) reported:

 

The 2-week control period, during which no intervention was applied, was followed by a 12-week chiropractic care intervention. During the 12 weeks of chiropractic care, the chiropractor assessed and treated the subject as she would any other chronic pain patient. The participating chiropractor (H.H., with 7 years clinical experience) assessed the spine for segmental dysfunction using tenderness on palpation and passive intervertebral and global motion of the spine. Other treatments included as part of chiropractic care were exercises, peripheral joint adjustments/manipulations, soft tissue therapy, and pain education if deemed by the chiropractor to be appropriate based on history and examination. The chiropractic adjustment/manipulation was the delivery of a high-velocity, low-amplitude thrust to dysfunctional spinal segments. (pgs. 129-130)

 

The changes observed conclude (with the aforementioned disclaimer that more research is needed) that chiropractic is a verifiable treatment option. Haavik, Niazi, Holt and Murphy (2017) continued:

 

The changes observed in dual SEP ratios after several weeks of chiropractic care in a chronic pain population suggest that this treatment option may improve gating of peripheral afferent input to the brain, thus improving impaired SMI in cortical motor areas and improving processing of motor programs. Impaired SMI and defective motor programming is known to be present in various chronic pain populations and is implicated in the clinical symptomatology. We know from the literature that in normal circumstances, afferent input to the motor system leads to finely tuned activation of neural elements and ultimately results in the correct execution of movement. Multiple experimental and clinical studies have confirmed the importance of sensory feedback to the motor system. Thus, distorted sensory information is thought to disturb SMI and impair accurate motor control. In normal circumstances, 2 inputs that engage the sensory system have a reciprocally inhibitory action that gates the total amount of signal at all central levels, spatially and temporally limiting the amount of input engaging the CNS. This is thought to prevent sensory “overflow.” The defective gating may cause an input-output mismatch in specific motor programs, and such mismatches in motor programs may in themselves lead to production of distorted sensory information and issue of less than ideal motor commands. In this way, the chronicity of the problem can be maintained via a self-perpetuating mechanism. The reduced frontal N30 SEP peak ratio observed in the current study after 12 weeks of chiropractic care may reflect a normalization of pain-induced central maladaptive plastic changes and may reflect one mechanism for the improvement of functional ability reported following chiropractic adjustment or manipulation. (pgs. 134-135)

 

Haavik, Niazi, Holt and Murphy (2017) concluded:

 

After the 12 weeks of chiropractic care, when he was also feeling better symptomatically, this was reversed, and all of his MU traces for all SEP peak complexes were smaller in amplitude than his M + U trace, indicating a greater level of central reciprocal inhibition was occurring… Thus, if sensory “overflow” occurs, then incomplete processing of this incoming signal may occur in the brain, resulting in its perceiving not only excessive, but also spatially distorted information. (pg. 135)

 

The N9 SEP peak (the “N” is a location for electrodes) reflects the afferent signal over the brachial plexus before it enters the CNS, and thus can be used to ensure that the incoming signal is consistent before and after an intervention. Furthermore, these experiments demonstrated that the subjects' N30 SEP peak ratios decreased significantly after a single chiropractic manipulation of the cervical spine. As the N30 SEP peak is thought to reflect early cortical SMI, the authors argued that their results suggest that the subject's SMI networks' ability to suppress the dual input after the adjustment was increased. The N30 SEP peak ratios remained decreased even after repeating the 20-minute repetitive thumb abduction task. This suggested that the treatment effects appear to have altered the way in which each subject's CNS responded to the repetitive thumb typing task.

 

When considering treating chronic pain, dystonia, essential tremor or any other type of patient where there are spatial (distorted or excessive afferent) input issues, the above care path (treatment plan) should be considered. By not completed a complete treatment protocol might expose your patient to a chronic issue that may become permanent if the maladaptive cortical changes persist over time. Since there are no timetables for how long a patient can withstand for the issue to become permanent and there is an indexed peer reviewed suggestion of correction, that must be adhered as a minimum until further evidence suggests otherwise. In addition, no two patients are alike and the treatment plan should be guided with a full clinical reevaluation and consider performing that examination every 30 days of active care considering all facets, both history and clinical.

 

 

References:

  1. Haavik, H., Niazi, I. K., Holt, K., & Murphy, B. (2017). Effects of 12 Weeks of Chiropractic Care on Central Integration of Dual Somatosensory Input in Chronic Pain Patients: A Preliminary Study. Journal of manipulative and physiological therapeutics40(3), 127-138.
  2. Restuccia, D., Valeriani, M., Barba, C., Le Pera, D., Bentivoglio, A., Albanese, A. & Tonali, P. (2003). Abnormal gating of somatosensory inputs in essential tremor. Clinical neurophysiology114(1), 120-129.
  3. Baliki N., Geha P., Apkarian A., Chialvo D., (2008) Beyond Feeling: Chronic Pain Hurts the Brain, disrupting the Default-Mode Network Dynamics, Journal of Neurosciences 28(6) 1398-1403
  4. Essential Tremor (2017) retrieved from: https://en.wikipedia.org/wiki/Essential_tremor

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chronic Pain and Chiropractic:

A 12-Week Solution & Necessity for Care

 

By Mark Studin

William J. Owens

A report on the scientific literature and commentary 

 

 

How long should a patient be under chiropractic care? This has been the struggle for many in the insurance industry, the legal community, licensure boards and a “hot topic” politically. There are the CCGPP [Council on Chiropractic Guidelines and Practice Parameters], the Croft Guidelines, Best Practice for Chiropractic Care for Older Adults, Best Practices Recommendations for Chiropractic Care for Infants, Children and Adolescents, Chiropractic Practice Guidelines: Chiropractic Care for Low Back Pain. These are just some of the chiropractic industry’s guidelines, then you must consider the insurance industry’s care paths where most are hidden behind statements like “medical necessity” and “eligible charges.” Those are “buzz phrases” indicating they have a guideline, but most will neither publish or make them available to the providers, their insured or the public claiming proprietary information giving them a legal basis for the secrecy.

 

 

Aetna, as an example lists specifics for care and then goes further to limit a significant number of techniques, procedures and diagnostics claiming they are “experimental.” Although Medicare considers chiropractic a covered service they limit treatment arbitrarily according based upon significant feedback from many in the profession.  Workers Compensation Boards have guidelines that are either legislated or created based upon a case law judge’s opinion which include arguments from the defense to support limiting care.  At best, that is an arbitrary process based upon rhetoric or legislation that is too often ignorant of the scientific literature resulting in serious imposed limits in scope of treatment as we see in California, New York and many other states.

 

 

Although the guideline landscape is expansive, these authors choose to rely on a hybrid of both “Best Practice” and “Evidenced Based” method in the development of treatment plans. Both have a strong place in clinical practice, academic settings, the courts and third-party reimbursement systems.

 

Best Practice is defined as “a method or technique that has consistently shown results superior to those achieved with other means, and that is used as a benchmark. In addition, a best practice can evolve to become better as improvements are discovered. Best practice is considered by some as a businessbuzzword, used to describe the process of developing and following a standard way of doing things that multiple organizations can use" (Best Practice, http://en.wikipedia.org/ wiki/Best practice).

 

These are certain procedures in healthcare that are taught in schools, internships and residencies and are considered the “standard” by which care is expected to follow. These practices are based on clinical experience and rely heavily on time-tested approaches, that is how a profession evolves and grows.  Surprisingly, most of the best medical practice care paths are not published in the peer-reviewed indexed literature. This is due to many factors, but the most obvious are applications of financial resources and grants to “new” discoveries and the simple fact that the clinical arena is well positioned to monitor and adjust these practices in a timely manner allowing practitioners to keep pace with the literature that follows. In recent times, although it has been talked about for decades, there is another parameter that exists and although focuses on best practices, there is a strong reliance on published studies, aka “evidence”, as the main driver of whether a procedure is approved and reimbursed. This is extremely problematic to healthcare outcomes.

Evidence-based practice(EBP) is an interdisciplinary approach to clinical practice that has been gaining ground following its formal introduction in 1992. It started inmedicineasevidence-based medicine (EBM) and spread to other fields such as dentistry, nursing, psychology,

education, library and information science and other fields. Its basic principles are that all practical decisions made should be based on three important criteria.  First, they must be based on the practicing provider’s clinical experience, secondly, they should be based on published research studies and thirdly should consider the patients expectations.

 

"Evidence-based behavioral practice(EBBP) entails making decisions about how to promote health or provide care by integrating the best available evidence with practitioner expertise and other resources, and with the characteristics, state, needs, values and preferences of those who will be affected. This is done in a manner that is compatible with the environmental and organizational context. Evidence is comprised of research findings derived from the systematic collection of data through observation and experiment and the formulation of questions and testing of hypotheses" (Evidence-Based Practice, http://en.wikipedia.org/wiki/Evidence-based_practice).

 

This highly-debated topic of evidence-based vs. best practice has valid issues on each side, but putting them together as a hybrid would allow them to thrive in both a healthcare delivery and reimbursement system; therefore, all sides would win. This would allow advances in healthcare to save more lives, increase the quality of life and at the same time, offer enough safeguards to prevent abuse to payors. A one-sided approach would tip the scales to favor either the provider/patients or the payors which, in the end, results in distrust and conflict.

Evidence-based medicine proponents argue that it would eliminate waste and reduce costs while providing patients with the most up-to-date care available. Those against this concept argue that reliance on evidence-based care would eliminate many procedures that fall under the best medical practice parameters and remove the clinical decision making and professional experience from the equation. They feel what would be left is denial of good therapies and the stifling of innovation since the process of establishing a research study, following its participants and publishing those findings can take many years not to mention poor study design or research bias can have both a profound effect on the evidence provided and severely delay the final publication. This delay would eventually cost either lives or severely diminish the quality of life for those who could have been helped during the research and publication processes.

Haavik, Niazi, Holt and Murphy (2017) reported:

 

Post hoc tests using the Bonferroni correction revealed significant mean differences in N30 MU amp (P = .049) and N30 MU to M + U ratio data (P = .001) during the chiropractic intervention, but no significant changes were observed during the control period (P = .1 for N30 MU amp and P = .3 for N30 MU to M + U ratio data). The effect size for the change in N30 MU amp was 0.61, and for the N30 MU to M + U ratio it was 0.66. The N30 ratio change represented on average a 37.4% decrease following the 12 weeks of chiropractic care. The N30 MU amplitude changes following chiropractic care represented an 18.0% decrease in amplitude compared with baseline. (Pg 131)

 

These results were based upon a limited study, but validates that a chiropractic spinal adjustment modulated aberrant afferent input by 37.4% in median and ulnar nerve rations and 18% in median and ulnar nerve amplitudes.

 

The authors went on to report:

 

The purpose of this preliminary study was to assess whether the dual SEP technique is sensitive enough to measure changes in cortical intrinsic inhibitory interactions in patients with chronic neck pain after a 12-week period of chiropractic care and, if so, whether any such changes related to changes in symptomatology. (pg. 128)

 

This was tested to determine if inhibitory innervation was affected specifically by a chiropractic spinal adjustment and the outcomes conclusively, against a 2-week control period of the same test subjects confirmed these results.

Haavik, Niazi, Holt and Murphy (2017) went on to describe the 12 weeks of chiropractic care that realized these results:

 

The chiropractic care plan was pragmatic and generally consisted of 2 to 3 visits per week for the first 2 to 3 weeks. Frequency was reduced based on clinical findings and patient symptomatology. By the end of the 12-week period, participants were seen once or twice a week. No requirements were placed on the treating chiropractor, other than including chiropractic adjustment or manipulation during treatment; thus, the care plan was designed in conjunction with patient preferences and was based on the patients’ history, symptoms, wishes, and time availability as well as the clinician’s clinical experience and knowledge. (pg. 130)

 

Although the length of care in this study does not render a specific guideline, it does validate that it takes time to realize changes in the mechanics of the spine and the human nervous system.  The results are consistent with the “Best Practice Model” and the authors 57 years of combined experience and results. Twelve weeks of care is a conservative and reasonable time frame since we are observing and considering that cerebral neuroplastic changes are a direct and verifiable result of a chiropractic spinal adjustment. Less than 12 weeks of chiropractic spinal adjusting has not been evidenced to make these reported changes, therefore we must consider this threshold for care.Concurrently, what we see is that less treatment time does not allow the connective tissue to help the spine as one contiguous organ system to remodel to a homeostatic state (a conversation for a different paper).

 

Chiropractic care for chronic pain patients requires a both a combination of Best Practice and Evidenced Based models as the literature is now verifying that a chiropractic spinal adjustment is an effective care path and 12 weeks is a minimum to see neuroplastic changes.  Clinically speaking however, to confirm the optimum care path for this particular population of patients, continuation of care should be based on re-evaluations every 30-days and should continue as clinical sign and symptoms persist and there is evidence that the patient is benefiting both in the short and long term.   Additionally, no significant improvement over the first 12 weeks should be considered acceptable as neuroplastic changes are a process. Although these authors have rarely personally experienced a lack of significant neuro-biomechanical changes over that time period, it is a clinical decision that must be derived by the treating provider in a “Best Practice Model” and not a 3rd party.

 

References:

  1. Aetna Chiropractic Services (2017) Retrieved from: http://www.aetna.com/cpb/medical/data/100_199/0107.html
  2. https://www.medicare.gov/coverage/chiropractic-services.html
  3. Best Practice. (n.d.). In Wikipedia. Retrieved January 3, 2012, from http://en.wikipedia.org/wiki/Best_practice
  4. Evidence-Based Practice. (n.d.). In Wikipedia. Retrieved January 3, 2012, from http://en.wikipedia.org/wiki/Evidence-based_practice
  5. Sackett, D. L., Rosenberg, W. M., Gray, J. A., Haynes, R. B., & Richardson, W. S. (1996) Evidence based medicine: What it is and what it isn't. British Medical Journal, 312(7023), 71-72.
  6. Haavik, H., Niazi, I. K., Holt, K., & Murphy, B. (2017). Effects of 12 Weeks of Chiropractic Care on Central Integration of Dual Somatosensory Input in Chronic Pain Patients: A Preliminary Study. Journal of manipulative and physiological therapeutics40(3), 127-138.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic and Cervical Arterial Dissection:

Causal Relationship or Medical Dogma?

By Mark Studin

William J. Owens

A report on the scientific literature and commentary

There has been much controversy over the last 2 decades about the perceived causal relationship between a chiropractic cervical adjustment and dissecting arterial aneurysm on the internet, in the literature and in the beliefs of some in the medical community. Prior to examining the published facts, lets first clarify what an arterial dissection is.

 

According to Haneline and Rosner (2007)

Arterial dissection is an uncommon vascular wall condition that typically involves a tear at some point in the artery's lining and the formation of an intimal flap, which allows blood to penetrate into the muscular portion of the vessel wall. Blood flowing between the layers of the torn blood vessel may cause the layers to separate from each other, resulting in arterial narrowing or even complete obstruction of the lumen (Fig 1). Moreover, pulsatile pressure damages the muscular layer, resulting in a splitting or dissection of the intimal and medial layers that may extend along the artery variable distances, usually in the direction of blood flow.Another way for dissection to occur involves a primary intramural hemorrhage of the vasa vasorum, which builds pressure between the intimal and medial layers and may eventually rupture into the vessel's true lumen. Occasionally, a double lumen (also known as false lumen) is formed when the subintimal hemorrhage ruptures back into the arterial lumen distally. (pgs. 113-114) 

 

 

Fig. 1

 

In addition, Haneline and Rosner (2007) wrote a decade ago:

Of special interest to chiropractors is the role cervical spine manipulation [CSM] plays, if any, in the pathogenesis of CAD [Cervical Artery Dissection]. Indeed, patients do experience CAD on rare occasions after CSM, making knowledge about the cervical arteries, the predisposing factors, and the pathogenesis of the condition important for chiropractors. (pg. 110)

 

This comment, early in the potential relationship between cervical adjusting and cervical arterial dissection [CAD] warranted a warning to healthcare provider about CAD and cervical adjusting making it important to understand the cervical arteries. This is underscored by the authors themselves being chiropractors and memorizing this “caveat” to the profession.

 

 

In a September 2017 presentation by Candice Perkins MD, Neurology, Vascular Neurology (an attending stroke neurologist and both an Associate and Assistant Professor of Clinical Neurology at the State University of New York at Stony Brook Hospital and Medical Center from 2001 - 2016) in New York, she stated that there is zero evidence for direct causal relationship between stroke and a chiropractic cervical adjustment performed by a licensed chiropractor in the appropriate clinical presentation. Dr. Perkins went on to explain that there are numerators and denominators. The denominator are strokes and the presence of a patient with a stroke. The numerator is the associated incidence. In her vast experience with stroke, there are an unlimited number of numerators with chiropractic being one, however if one uses that same equation, there are hundreds of other equally potential factors with primary care medical visits being of equal incidence. In addition, with her understanding chiropractic as a patient and from the literature, there is scant evidence that a chiropractic adjustment can be the causative factor of cervical dissecting aneurysm.

 

 

Researchers from the University of Pennsylvania Department of Neurosurgery came to the same conclusions. In a systematic and meta-analysis of chiropractic care and cervical arterial dissection, they concluded:

There is no convincing evidence to support a causal link between chiropractic manipulation and CAD. (pg. 1)

 

Church et. Al reviewed 253 published articles and scored them on a GRADE system with 4 variables, high, moderate, low and very low in reliability of the research available on CAD and chiropractic adjustments. They concluded:

Scrutiny of the quality of the body of data using the GRADE criteria revealed that it fell within the “very low” category. We found no evidence for a causal link between chiropractic care and CAD. This is a significant finding because belief in a causal link is not uncommon, and such a belief may have significant adverse effects such as numerous episodes of litigation.  (pg. 6)

 

 

Perhaps the greatest threat to the reliability of any conclusions drawn from these data is that together they describe a correlation but not a causal relationship, and any unmeasured variable is a potential confounder. The most likely potential confounder in this case is neck pain. Patients with neck pain are more likely to have CAD (80% of patients with CAD report neck pain or headache), and they are more likely to visit a chiropractor than patients without neck pain. (pg. 7)

 

This is the same opinion of Dr. Perkins as reported above, where the presence of CAD does not have a causal relationship simply because the neck pain brought them to a chiropractor. The CAD would have happened with or without the chiropractic adjustment as is concluded by medical experts and the literature.

 

 

To further the argument, Cassidy, Boyle, Cote`, He, Hogg-Johnson, Silver and Bondy (2008) reported:

There were 818 VBA [Vertebral Basilar Artery] strokes hospitalized in a population of more than 100 million person-years. In those aged 45 years, cases were about three times more likely to see a chiropractor or a PCP before their stroke than controls. Results were similar in the case control and case crossover analyses. There was no increased association between chiropractic visits and VBA stroke in those older than <45 years. Positive associations were found between PCP visits and VBA stroke in all age groups. (pg. S176)

 

Murphy (2010) reported,

Therefore, based upon the best current evidence, it appears that there is no strong foundation for a causal relationship between CMT [Chiropractic Manipulative Therapy] and VADs [Vertebral Artery Dissection]. The most plausible explanation for the association between CMT and VADs is that individuals who are experiencing a vertebral artery dissection seek care from a chiropractic physician or other manual practitioner for relief of the neck pain and headache that results from the dissection. Sometime after the visit the dissection proceeds along its natural course to produce arterial blockage, leading to stroke. This natural progression from dissection to stroke appears to occur independent of the application of CMT. (pg. 4)

 

Church, Sieg, Hussain, Glantz and Harbaugh (2016) concluded, and an opinion that appears to reflect the facts of the issue and in accordance with those in chiropractic and medical academia based upon the author’s strong agreement:

Our systematic review revealed that the quality of the published literature on the relationship between chiropractic manipulation and CAD is very low. A meta-analysis of available data shows a small association between chiropractic neck manipulation and CAD. We uncovered evidence for considerable risk of bias and confounding in the available studies. In particular, the known association of neck pain both with cervical artery dissection and with chiropractic manipulation may explain the relationship between manipulation and CAD. There is no convincing evidence to support a causal link, and unfounded belief in causation may have dire consequences. (pg. 10)

In spite of the very weak data supporting an association between chiropractic neck manipulation and CAD, and even more modest data supporting a causal association, such a relationship is assumed by many clinicians. In fact, this idea seems to enjoy the status of medical dogma. (pg. 9)

 

That is the final definitive opinion of the Neurosurgery Department at the University of Pennsylvania.

 

 

References:

  1. Haneline, M. T., & Rosner, A. L. (2007). The etiology of cervical artery dissection. Journal of chiropractic medicine6(3), 110-120.
  2. Church, E. W., Sieg, E. P., Zalatimo, O., Hussain, N. S., Glantz, M., & Harbaugh, R. E. (2016). Systematic review and meta-analysis of chiropractic care and cervical artery dissection: no evidence for causation. Cureus8(2).
  3. Murphy, D. R. (2010). Current understanding of the relationship between cervical manipulation and stroke: What does it mean for the chiropractic profession? Chiropractic & Osteopathy, 18

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic and Successful Outcomes with Chronic Obstructive Pulmonary Disease

 

By: Mark Studin

William J. Owens

 

A report on the scientific literature

 

Chronic Obstructive Pulmonary Disease (COPD) is a preventable and treatable disease that makes it difficult to empty air out of the lungs. This difficulty in emptying air out of the lungs (airflow obstruction) can lead to shortness of breath or feeling tired because you are working harder to breathe. COPD is a term that is used to include chronic bronchitis, emphysema, or a combination of both conditions. Asthma is also a disease where it is difficult to empty the air out of the lungs, but asthma is not included in the definition of COPD. It is not uncommon, however for a patient with COPD to also have some degree of asthma. Chronic bronchitis is a condition of increased swelling and mucus (phlegm or sputum) production in the breathing tubes (airways). Airway obstruction occurs in chronic bronchitis because the swelling and extra mucus causes the inside of the breathing tubes to be smaller than normal. The diagnosis of chronic bronchitis is made based on symptoms of a cough that produces mucus or phlegm on most days, for three months, for two or more years (after other causes for the cough have been excluded). Emphysema is a condition that involves damage to the walls of the air sacs (alveoli) of the lung. Normally there are more than 300 million alveoli in the lung. The alveoli are normally stretchy and springy, like little balloons. Like a balloon, it takes effort to blow up normal alveoli; however, it takes no energy to empty the alveoli because they spring back to their original size. In emphysema, the walls of some of the alveoli have been damaged. When this happens, the alveoli lose their stretchiness and trap air. Since it is difficult to push all of the air out of the lungs, the lungs do not empty efficiently and therefore contain more air than normal. This is called air trapping and causes hyperinflation in the lungs. The combination of constantly having extra air in the lungs and the extra effort needed to breathe results in a person feeling short of breath. Airway obstruction occurs in emphysema because the alveoli that normally support the airways open cannot do so during inhalation or exhalation. Without their support, the breathing tubes collapse, causing obstruction to the flow of air. (http://www.thoracic.org/patients/patient-resources/resources/copd-intro.pdf)

Wearing, Beaumont, Forbes, Brown and Engler (2016) reported:

 

Extrapulmonary effects, such as skeletal muscle dysfunction, affect the severity of the disease and provide a potential target for therapeutic intervention. An estimated 18%–36% of people with COPD experience skeletal muscle dysfunction at a level that affects exercise capacity and dyspnea levels, both predictors of mortality in COPD. Because exercise capacity is a measure of the amount of exercise that can be performed before the onset of leg fatigue or exercise-limiting dyspnea, a decrease in capacity has been associated with poorer quality of life and higher hospitalization rates. Nonpharmacologic interventions benefit people with COPD.  For example, pulmonary rehabilitation (PR) is considered to be a well-developed, multidisciplinary approach to managing many extrapulmonary effects associated with COPD.  However, PR has little clinical effect on lung function. Similarly, research into the effect of acupuncture has shown that this modality has little effect on long-term lung function despite helping improve dyspnea levels and exercise tolerance. (pgs. 108-109)

  

The authors have had long-term experience in treating COPD utilizing a portion of the "Evidence-based behavioral practice“ model in observing results from patients over the past 3 decades.

Evidence-based behavioral practice(EBBP) entails making decisions about how to promote health or provide care by integrating the best available evidence with practitioner expertise and other resources, and with the characteristics, state, needs, values and preferences of those who will be affected. This is done in a manner that is compatible with the environmental and organizational context. Evidence is comprised of research findings derived from the systematic collection of data through observation and experiment and the formulation of questions and testing of hypotheses (Evidence-Based Practice, http://en.wikipedia.org/wiki/Evidence-based_practice).

In the observation component of the evidence-based behavioral practice model, the authors have observed COPD patients realize increased tidal volumes, forced vital volume, forced expiratory volume and residual increased volumes performed on a Renaissance Spirometer by Puritan-Bennett in the 1990’s, post chiropractic spinal adjustment. These results (the printouts have since been discarded) were consistent with both acute and chronic emphysema patients with multiple etiologies and were verified both with the spirometer volumes and the patient’s feedback. Due to limited resources (and research inexperience) of the authors in the 1990’s, this information was limited to patients who had similar issues at the local clinical level. Nonetheless, the results were consistent and reproducible, however the was no literature to corroborate or validate these findings at the time.

In contemporary literature, there is now a basis to support the authors previous findings. Wearing, Beaumont, Forbes, Brown and Engler (2016) continued:

 

This systematic review updates the results from a previous review and is the first to focus on evidence of the effect of administering SMT (spinal manual treatment of the chiropractic spinal adjustment) in conjunction with other interventions in the management of COPD. Improvements in lung function (increases in forced expiratory and forced vital volume; decrease in residual volume) and exercise capacity (increase in 6-minute walking test) were reported in three random clinical trials following a combination of SMT and exercise. While these findings were recorded in pilot and preliminary trials, they represent preliminary evidence that the combination of SMT with exercise may be more beneficial to people with COPD than exercise or SMT alone. Furthermore, the results provide additional information to the review by Heneghan and colleagues; however, the findings of this review contrast with the earlier conclusion that no evidence supported or refuted the use of MT on patients with COPD.

 

In conclusion, this appears to be the first systematic review to investigate the evidence for administering SMT in conjunction with other modalities, such as exercise, on people with COPD. The exclusion of such combinations may explain the disparity in findings between this review and the review by Heneghan et al., who found no evidence to support or refute the use of MT in the management of COPD. The importance of increasing exercise capacity, even by indirect methods such as increasing thoracic mobility should not be underestimated because exercise capacity is a predictor of mortality in COPD. As pulmonary rehabilitation does not improve lung function, the current findings may have wider implications if repeated in a larger cohort. (pg. 113)

 

Although Wearing et. Al (2016) acknowledged that this study was very limited in numbers and acknowledged that there could be benefit through co-management with exercise, the results mimicked the findings realized by the authors in the 1990’s.  In addition, Wearing et. Al.  reported no significant adverse effects of chiropractic care and is consistent with previous reports that chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5).

 

References:

  1. American Thoracic Society (2017) Retrieved from: http://www.thoracic.org/patients/patient-resources/resources/copd-intro.pdf
  2. Wearing, J., Beaumont, S., Forbes, D., Brown, B., & Engel, R. (2016). The use of spinal manipulative therapy in the management of chronic obstructive pulmonary disease: a systematic review.The Journal of Alternative and Complementary Medicine,22(2), 108-114.
  3. Evidence-Based Practice. (n.d.). In Wikipedia. Retrieved January 3, 2012, from http://en.wikipedia.org/wiki/Evidence-based_practice
  1. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Efficacy of Chiropractic Care on Cervical Herniated Discs with Degenerative Changes in the Spine

 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature

 

INTRODUCTION

When studying chiropractic care in relationship to herniated discs and degeneration, we must first look carefully at each component to ensure that we are consistent with language to ensure a better understanding. There have been many reports in the literature on chiropractic care and its efficacy. However, the reporting is often “muddled” based upon interchangeable terminology utilized to describe what we do. The etiology of the verbiage being used has apparently been part of a movement to gain acceptance within the healthcare community, but this attempt for a change in view by the healthcare community has cost us. Currently, the scientific community has lumped together manipulation performed by physical therapists or osteopaths with chiropractic spinal adjustments because all three professions perform “hands on” manual therapy to the spine. For example, Martínez-Segura, De-la-LLave-Rincón, Ortega-Santiago, Cleland, and Fernández-de-Las-Peñas (2012) discussed how physical therapists commonly use manual therapy interventions directed at the cervical or thoracic spine, and the effectiveness of cervical and thoracic spine thrust manipulation for the management of patients with mechanical, insidious neck pain. Herein lies the root of the confusion when “manipulation” is utilized as a “one-size-fits-all” category of treatment as different professions has different training and procedures to deliver the manipulation, usually applying different treatment methods and realizing different results and goals.

 

 

In addition, as discussed by Sung, Kang, and Pickar (2004), the terms “mobilization,” “manipulation” and “adjustment” also are used interchangeably when describing manual therapy to the spine. Some manipulation and virtually all chiropractic adjusting “…involves a high velocity thrust of small amplitude performed at the limit of available movement. However, mobilization involves repetitive passive movement of varying amplitudes at low velocity” (Sung, Kang, & Picker, 2004, p. 115).

 

To offset confusion between chiropractic and any other profession that involves the performance of some type of manipulation, for the purpose of clarity, we will be referring to any type of spinal therapy performed by a chiropractor as a chiropractic spinal adjustment (CSA) and reserve manipulation for other professions who have not been trained in the delivery of CSA. Until now, the literature has not directly supported the mechanism of the CSA. However, it has supported each component and the supporting literature, herein, will define the neuro-biomechanical process of the CSA and resultant changes. 

HERNIATED DISCS

 

When considering disc issues, Fardone et. Al (2014) defined the nomenclature that has been widely accepted both in academia and clinically and should be adhered to, to ensure that reporting and visualizing pathology is consistent with the morphology visualized. In the past, this has been a significant issue as many have called a bulge a protrusion, a prolapse or herniation. In today’s literature Fardone’s document has resolved much of those problems.

 

Herniated Disc: “Herniated disc is the best general term to denote displacement of disc material. The term is appropriate to denote the general diagnostic category when referring to a specific disc and to be inclusive of various types of displacements when speaking of groups of discs. The term includes discs that may properly be characterized by more specific terms, such as ‘‘protruded disc’’ or ‘‘extruded disc.’’ The term ‘‘herniated disc,’’ as defined in this work, refers to localized displacement of nucleus, cartilage, fragmented apophyseal bone, or fragmented annular tissue beyond the intervertebral disc space. ‘‘Localized’’ is defined as less than 25% of the disc circumference. The disc space is defined, craniad and caudad, by the vertebral body end plates and, peripherally, by the edges of the vertebral ring apophyses, exclusive of the osteophyte formation. This definition was deemed more practical, especially for the interpretation of imaging studies, than a pathologic definition requiring identification of disc material forced out of normal position through an annular defect.” (page E1454)

 

SPINAL DEGENERATION

 

Spinal degenerating is typically associated with vertebral body endplate changes, or degeneration of the bones of the spine and it starts at the edges. These changes were classified by Michael Modic MD, Neuroradiologist in 1988 and were classified into 3 categories:

Viroslav (2016) reported:

On histopathologic section, type 1 changes are associated with fissuring of the endplates and infiltration of vascularized fibrous tissue. Increased osteoclasts, osteoblasts, and reactive woven bone are also found, indicating that type 1 changes are due to an inflammatory-type response. Type 2 changes occur due to conversion of red marrow to fatty marrow, and type 3 changes represent subchondral sclerosis…. later studies have shown that endplate changes can fluctuate between types, and some changes can regress completely. Mixed Modic endplate changes are commonly seen, and support the contention that all of the changes are manifestations of the same process at different stages. Modic changes can also regress following lumbar fusion. (http://radsource.us/vertebral-endplate-changes/)

 

In short, Modic changes are stages reflective of the process the vertebrate undergoes in degeneration. First there is inflammation, then the marrow changes to fat preventing nutrients to feed the bone, followed by sclerotic or degeneration of bone. In the context of this article, how are spinal herniations responding to chiropractic care in lieu of inherent degenerative changes.

 

CHIROPRACTIC CARE

Kressig et. Al (2016) reported:

Although patients who were Modic positive had higher baseline NDI (Neck Disability Index) scores, the proportion of these patients improved was higher for all time points up to 6 months. Pg. 565

The results of the present study on patients with CDH (Cervical Disc Herniation), which indicate better treatment outcomes for patients with CDH with MCs (Modic Changes), are generally consistent with those reported for patients with LDH (lumbar disc herniation), other than the fact that the patients with CDH and MC reported no relapses…It is also important to mention that none of the patients in the present study reported worsening of their condition. Cervical HVLA manipulation (chiropractic spinal adjustment) has been controversial, with suggestions that it can lead to vertebral artery dissection and stroke. However, in 2007, a prospective national survey by Thiel et al studied almost 20 000 patients who were treated with cervical HVLA manipulation or mechanically assisted thrust. There were no reports of serious adverse events, which were defined as symptoms with immediate onset after treatment and with persistent or significant disability. Pg. 572

 

CONCLUSION

 

This report on the literature verifies that chiropractic care renders significant improvement in patients with cervical disc herniation in the presence of inflammation and/or degenerative changes using an accepted disability index in a verifiable scenario. This, in conjunction with other numerous report on the efficacy of chiropractic successfully treating patients with herniated discs offers solutions to an injured public.

 

Links to other articles:

 

Chiropractic Outcome Studies on Treatment of Fragmented/Sequestered and Extruded Herniated Discs and Radicular Pain

 

Spinal Fusion vs. Chiropractic for Mechanical Spine Pain

 

Cervical Disc Herniation with Radiculopathy (Arm Pain): Chiropractic Care vs. Injection Therapy

 

Disc Herniations and Low Back Pain Post Chiropractic Care

 

References:

  1. Kressig, M., Peterson, C. K., McChurch, K., Schmid, C., Leemann, S., Anklin, B., & Humphreys, B. K. (2016). Relationship of Modic Changes, Disk Herniation Morphology, and Axial Location to Outcomes in Symptomatic Cervical Disk Herniation Patients Treated With High-Velocity, Low-Amplitude Spinal Manipulation: A Prospective Study.Journal of manipulative and physiological therapeutics,39(8), 565-575.
  2. Martínez-Segura, R., De-la-LLave-Rincón, A. I., Ortega-Santiago, R., Cleland J. A., Fernández-de-Las-Peñas, C. (2012). Immediate changes in widespread pressure pain sensitivity, neck pain, and cervical range of motion after cervical or thoracic thrust manipulation in patients with bilateral chronic mechanical neck pain: A randomized clinical trial. Journal of Orthopedics & Sports Physical Therapy, 42(9), 806-814.
  1. Sung, P. S., Kang, Y. M., & Pickar, J. G. (2004). Effect of spinal manipulation duration on low threshold mechanoreceptors in lumbar paraspinal muscles: A preliminary report. Spine, 30(1), 115-122.
  2. Viroslav A. (2016) Vertebral Endplate Changes, Retrieved from: http://radsource.us/vertebral-endplate-changes/
  1. Fardon, D. F., Williams, A. L., Dohring, E. J., Murtagh, F. R., Gabriel Rothman, S. L., & Sze, G. K. (2014). Lumbar disc nomenclature: Version 2.0. Recommendations of the combined task forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine, 39(24), E1448-E1465.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic Care Improves Senses and Reduces Risks of Falling in the Elderly Population

A report on the scientific literature

 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

As our population ages, our most senior are being told that their heart diseases or cancers won’t be as likely to cause death as sequella from a fall. Therefore, doctors are urging that sect of population to rely more and more on canes, walkers and other devices to help offer greater support when balance issues become even slightly problematic. According to Holt et. Al (2016) “Falls account for more than 80% of injury related hospital admissions in people older than 65 years and they are the leading cause of injury related death in older adults. Approximately 30%-40% of community-dwelling older adults suffer from at least 1 fall per year.” (pg. 267)

 

Holt et. al. listed the following risks associated with falls

  1. Lower limb weakness
  2. Recent History of Falling
  3. Gait Deficits
  4. Deterioration of the sensorimotor system that occurs regularly with normal aging

 

The National Institute of Health (NIH) expanded the list of risk factors in older adults to include:

  1. Muscle weakness
  2. Balance and gait
  3. Blood pressure drops
  4. Postural hypotension
  5. Reflexes slower
  6. Foot problems
  7. Sensory problems
  8. Vision issues
  9. Confusion
  10. Medications

(http://nihseniorhealth.gov/falls/causesandriskfactors/01.html)

 

Comparatively speaking, both the Holt et. Al. and the NIH are in agreement that falling can be a multifactorial issue with often no single cause or solution. However, if an older person, who has one or more of the above risk factors can minimize those risks, the likelihood of falling can be decreased and potentially extend their life. Holt et. al. continued “There is however, a growing body of basic science evidence that suggests that chiropractic care may influence sensory and motor systems that potentially have an impact on some of the neuromuscular risk factors associated with falling.” (pg. 268) In short, the evidence has suggested that chiropractic can reduce the risk of falling in older adults.

 

Holt et. al. found that the mechanisms where chiropractic may influence sensorimotor functions are:

  1. Neuroplastic processes in the central nervous system through altered afferent input.
  2. Pain and altered cognition as a result with respect to attention focus and physical function
  3. Muscle strength and muscle activity patters
  4. Deterioration of the sensorimotor system that occurs regularly with normal aging

Looking at those neuroplastic processes or effects of chiropractic on the central nervous system, Gay et al. (2014) reported, “…pain-free volunteers processed thermal stimuli applied to the hand before and after thoracic spinal manipulation (a form of MT).  What they found was that after thoracic manipulation, several brain regions demonstrated a reduction in peak BOLD [blood-oxygen-level–dependent] activity. Those regions included the cingulate, insular, motor, amygdala and somatosensory cortices, and the PAG [periaqueductal gray regions]” (p. 615). In other words, thoracic adjustments produced direct and measureable effects on the central nervous system across multiple regions, which in the case of the responsible for the processing of emotion (cingulate cortex, aka limbic cortex) are regarding the insular cortex which also responsible for regulating emotion as well has homeostasis. The motor cortex is involved in the planning and execution of voluntary movements, the amygdala’s primary function is memory and decision making (also part of the limbic system), the somatosensory cortex is involved in processing the sense of touch (remember the homunculus) and, finally, the periaqueductal gray is responsible for descending pain modulation (the brain regulating the processing of painful stimuli).

 

This is a major step in showing the global effects of the chiropractic adjustment, particularly those that have been observed clinically, but not reproduced in large studies.  “The purpose of this study was to investigate the changes in FC [functional changes] between brain regions that process and modulate the pain experience after MT [manual therapy]. The primary outcome was to measure the immediate change in FC across brain regions involved in processing and modulating the pain experience and identify if there were reductions in experimentally induced myalgia and changes in local and remote pressure pain sensitivity” (Gay et al., 2014, p. 615). 

 

Coronado et al. (2012) reported that, “Reductions in pain sensitivity, or hypoalgesia, following SMT [spinal manipulative therapy or the chiropractic adjustment] may be indicative of a mechanism related to the modulation of afferent input or central nervous system processing of pain” (p. 752). “The authors theorized the observed effect related to modulation of pain primarily at the level of the spinal cord since (1) these changes were seen within lumbar innervated areas and not cervical innervated areas and (2) the findings were specific to a measure of pain sensitivity (temporal summation of pain), and no other measures of pain sensitivity, suggesting an effect related to attenuation of dorsal horn excitability and not a generalized change in pain sensitivity” (Coronado et al., 2012, p. 752).These findings indicate that a chiropractic spinal adjustment affects the dorsal horns at the root levels which are located in the central nervous system.  This is the beginning of the “big picture” since once we identify the mechanism by which we can positively influence the central nervous system, we can then study that process and its effects in much more depth.    

 

One of the main questions asked by Corando et al. (2012) “…was whether SMT (chiropractic adjustments) elicits a general response on pain sensitivity or whether the response is specific to the area where SMT is applied. For example, changes in pain sensitivity over the cervical facets following a cervical spine SMT would indicate a local and specific effect while changes in pain sensitivity in the lumbar facets following a cervical spine SMT would suggest a general effect. We observed a favorable change for increased PPT [pressure pain threshold] when measured at remote anatomical sites and a similar, but non-significant change at local anatomical sites. These findings lend support to a possible general effect of SMT beyond the effect expected at the local region of SMT application (p. 762).

 

The above mechanisms take the effects of chiropractic care out of the realm of theory and validates the processes through which chiropractic works based upon the scientific evidence (literature).

 

 

Holt et. Al found that outcomes measured for both sensorimotor and quality of life increased with chiropractic care. The primary outcomes of improvement choice stepping reaction time (CSRT)and sound-induced flash illusion. The CSRT involves feet placement in a timed scenario and sound-induced flash illusion involves multisensory processing to ascertain reaction to perceived illusions. Both have been significantly related to older populations and falling. Although the results of this study has its limitations, as many studies do. Holt concluded” The results of this trial indicated that aspects of sensorimotor integration and multisensory integration associated with fall risk improved in a group of community-dwelling older adults receiving chiropractic care. The chiropractic group also displayed small, statistically significant improvements in health-related quality of life related to physical health when compared with a “usual care” control. These results support previous research which suggests that chiropractic care may alter somatosensory processing and sensorimotor integration.” (pg. 277)  

 

As with many of our articles from here forward, I would like to leave you with a last and seemingly unrelated statement.  I felt it was important to add this at the end since many of our critics negatively portray the safety of chiropractic care.  This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified” (Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

 

References:

  1. Holt K., Haavik H., Lee A., Murphy B., Elley C., (2016) Effectiveness of Chiropractic Care to Improve Sensorimotor Function Associated with Falls Risk in Older People: A Randomized Controlled Trial, Journal of Manipulative and Physiological Therapeutics, 39(4) 267-278
  2. Falls and Older Adults, Causes and Risk Factors (n.d.) National Institute of Health, retrieved from: http://nihseniorhealth.gov/falls/causesandriskfactors/01.html
  3. Gay, C. W., Robinson, M. E., George, S. Z., Perlstein, W. M., & Bishop, M. D. (2014). Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain.Journal of Manipulative and Physiological Therapeutics, 37(9), 614-627.
  4. Coronado, R. A., Gay, C. W., Bialosky, J. E., Carnaby, G. D., Bishop, M. D., & George, S. Z. (2012). Changes in pain sensitivity following spinal manipulation: A systematic review and meta-analysis, Journal of Electromyography Kinesiology, 22(5), 752-767.
  1. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic Care for Neck and Low Back Pain: Evidenced Based Outcomes

 

98.5% of chiropractic patients had their expectations exceeded

 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature

 

As the scientific, academic and reimbursement establishments further entrench in an evidenced based model, it is critical to both examine and utilize studies when treating mechanical spine patients with chiropractic care. Although there are many sects in the chiropractic profession who shun the title “mechanical spine pain,” it is universally accepted term interprofessionally for any etiology of spine pain exclusive of tumor, fracture or infection. This definition fits every licensure board’s scope of practice for chiropractic where chiropractic is licensed. 

 

In the United Kingdom, Field and Newell (2016) reported that back pain accounts for 4.8% of all social benefit claims with overall costs reaching $7 billion pounds or $9.35 billion US dollars. Boyles (2016) reported that “Researchers from the University of Washington, Seattle, found that the nation's dramatic rise in expenditures for the diagnosis and treatment of back and neck problems has not led to expected improvements in patient health. Their study appears in the Feb. 13 issue ofThe Journal of the American Medical Association. After adjustment for inflation, total estimated medical costs associated with back and neck pain increased by 65% between 1997 and 2005, to about $86 billion a year… Yet during the same period, patients reported more disability from back and neck pain, including moredepressionand physical limitations.

 

“We did not observe improvements in health outcomes commensurate with the increasing costs over time," lead researcher Brook I. Martin, MPH, and colleagues wrote. "Spine problems may offer opportunities to reduce expenditures without associated worsening of clinical outcomes." (http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain)

 

Although it has been widely reported that expenditures a decade later has far exceeded the 2005 figure, the opioid epidemic, in part from musculoskeletal etiology is another example WebMD’s reporting on the American Medical Association’s finding of increased disability from neck and back pain inclusive of depression and physical limitations. The variable therefore is not predicated on financial expenditures, but treatment paradigms that work and have been verified in an evidenced based environment. 

 

Clinicians should always be striving to offer the best care at the lowest cost available. Carriers should always strive to fulfill their contractual obligation of providing necessary care delivered in a usual and customary manner while preventing overutilization through built-in safeguards. With doctors managing their patient’s conditions, there are two major parameters that are utilized, best medical practice also known as “experience” and evidence-based practice or that which has only been concluded in the medical literature. Both have a strong place in the healthcare delivery and reimbursement systems.  

"A best practiceis a method or technique that has consistently shown results superior to those achieved with other means, and that is used as a benchmark. In addition, a "best" practice can evolve to become better as improvements are discovered. These are procedures in healthcare that are taught in schools, internships and residencies and are considered the “standard” by which procedures are followed. These practices are based on clinical experience and rely heavily on time-tested approaches. Surprisingly, most of the best medical practice care paths are not published in the peer-reviewed indexed literature. This is due to many factors, but the most obvious are applications of financial resources to “new” discoveries and the simple fact that the clinical arena is adequate to monitor and adjust these practices in a timely manner for practice to keep up with the literature that follows. 

 

Evidence-based practice(EBP) is an interdisciplinary approach to clinical practice that has gained ground following its formal introduction in 1992. It started inmedicineasevidence-based medicine (EBM) and spread to other fields such as dentistry, nursing, psychology,

education, library and information science and other fields. Its basic principles are that all practical decisions made should 1) be based on research studies and 2) that these research studies are selected and interpreted according to some specific norms characteristic for EBP. Typically, such norms disregardtheoretical studiesandqualitative studiesand considerquantitative studiesaccording to a narrow set of criteria of what counts as evidence.

 

 

"Evidence-based behavioral practice(EBBP) entails making decisions about how to promote health or provide care by integrating the best available evidence with practitioner expertise and other resources, and with the characteristics, state, needs, values and preferences of those who will be affected. This is done in a manner that is compatible with the environmental and organizational context. Evidence is comprised of research findings derived from the systematic collection of data through observation and experiment and the formulation of questions and testing of hypotheses" (Evidence-Based Practice, http://en.wikipedia.org/wiki/Evidence-based_practice).

 

This highly-debated topic of evidence-based vs. best practice has valid issues on each side, but putting them together as a hybrid would allow them to thrive in both a healthcare delivery and reimbursement system; all sides would win. This would allow advances in healthcare to save more lives, increase the quality of life and at the same time, offer enough safeguards to prevent abuse to payors. A one-sided approach would tip the scales to either the provider/patients or the payors.

Fields and Newell (2016) studied 2 groups of patients, those treated in private practices and the second in the United Kingdom’s funded National Health Service clinics. For this report, I will focus on the Government funded National Health Service statistics. The evidence sought was the satisfaction of patients with both neck and low back pain who underwent chiropractic care and in this report it satisfies both paradigms of “Best Practice and Evidenced Based Practice” models. They reported that 98.5% of neck and low back pain “patients were more likely to have had their expectations exceeded” (pg. 57) under chiropractic care.

 

 

In a healthcare environment, where overspending is both not the solution and problematic by creating iatrogenic issues in the form of opioid addiction and unresolved biomechanical failures leading to premature long-term musculoskeletal degenerative Fields and Newell have simply asked the patients, have your needs been met or exceeded. Not to diminish studies on the why or how come, patient satisfaction in an evidenced based outcome study that verifies it works with a drug-free option.

 

 

As with many of our articles from here forward, I would like to leave you with a last and seemingly unrelated statement.  I felt it was important to add this at the end since many of our critics negatively portray the safety of chiropractic care.  This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

 

References:

  1. Field J., Newell D. (2016) Clinical Outcomes In a Large Cohort of Musculoskeletal Patients Undergoing Chiropractic Care In the United Kingdom: A Comparison of Self and National Health Service Referral Routes, Journal of Manipulative and Physiological Therapeutics, 39(1), pgs. 54-62
  2. Boyles S., $86 Billion Spent on Back, Neck Pain, WebMD (2016) Retrieved from: http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain
  3. Best Practice. (2016). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Best_practice
  4. Evidence-Based Practice. (2016). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Evidence-based_practice
  5. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Fibromyalgia Improvement has been

Linked to Chiropractic Care

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William Owens DC, DAAMLP, CPC

According to the Mayo Clinic:

Fibromyalgia is a disorder characterized by widespread musculoskeletal pain accompanied by fatigue, sleep, memory and mood issues. Researchers believe that fibromyalgia amplifies painful sensations by affecting the way your brain processes pain signals. Symptoms sometimes begin after a physical trauma, surgery, infection or significant psychological stress. In other cases, symptoms gradually accumulate over time with no single triggering event. Women are much more likely to develop fibromyalgia than are men. Many people who have fibromyalgia also have tension headaches, temporomandibular joint (TMJ) disorders, irritable bowel syndrome, anxiety and depression. While there is no cure for fibromyalgia, a variety of medications can help control symptoms. Exercise, relaxation and stress-reduction measures also may help.

 

 

Symptoms Include:

 

  • Widespread pain. The pain associated with fibromyalgia often is described as a constant dull ache that has lasted for at least three months. To be considered widespread, the pain must occur on both sides of your body and above and below your waist.
  •  People with fibromyalgia often awaken tired, even though they report sleeping for long periods of time. Sleep is often disrupted by pain, and many patients with fibromyalgia have other sleep disorders, such as restless legs syndrome and sleep apnea.
  • Cognitive difficulties. A symptom commonly referred to as "fibro fog" impairs the ability to focus, pay attention and concentrate on mental tasks.
  • Other problems. Many people who have fibromyalgia also may experience depression, headaches, and pain or cramping in the lower abdomen.

(http://www.mayoclinic.org/diseases-conditions/fibromyalgia/basics/symptoms/con-20019243)

 

By Mayo Clinic’s own admission, medicine has no solution for fibromyalgia patients when they report that these case are to be managed and further report that the management includes pain medication, antidepressants, anti-seizure drugs and psychotherapy. None have a cure, but all (except the psychotherapy have side effects.

 

 

In order to fully understand the effects of the spinal adjustment on the function and potential disease processes, we must first understand there are three primary pathways by which the chiropractic adjustment effects the human body.  These are through biomechanics (local joint fixation and motion), pain management (organized and monitored through sensory input into the dorsal horn of the spinal cord to higher centers in the brain) and the autonomic systems (sympathetic and parasympathetic influences such as blood pressure changes through the endocrine system).

 

It has been well established, as reported by Studin, Owens, and Zolli (2015), that the chiropractic spinal adjustment has a direct and immediate effect on the central nervous system, outlined as part of the “pain management” pathway of the chiropractic spinal adjustment response. Research has shown that the chiropractic spinal adjustment affects the modulation of ascending and descending communication in the central nervous system within the dorsal horn. The adjustment then affects the thalamus and other areas of the brain and has a direct effect on gating pain in both directly treated and disparate regions as a result of the central nervous system connections.  There are ancillary effects within primitive centers of the brain that control anxiety, depression and chronic responses to pain. 

 

Kovanur Sampath, Mani, Cotter and Tumilty (2015) reported that the effects of spinal manipulation (chiropractic spinal adjustments) on various functions of the autonomic nervous system have been well identified in manual therapy literature. They reported “The common physiological mechanism proposed for these autonomic nervous system changes involves possible influence on segmental and extrasegmental reflexes with a prominent role given to the peripheral sympathetic nervous system” They concluded, “…cervical manipulation elicits a parasympathetic response and a thoracic/lumbar SM [spinal manipulation] elicits a sympathetic response” (Kovanur Sampath et al., 2015, p. 2).  

 

In summary, it is evident that spinal manipulation has an effect on the autonomic nervous system though the direction of effect may vary.  While we have spent years observing and studying the effects of the chiropractic spinal adjustment, there has never been an identified direct connection to the higher cortical areas until recently.  The literature, according to Kovanur Sampath et al. (2015), has concluded that there is a direct relationship between the autonomic system and the hypothalamus - pituitary – adrenal gland in chronic pain syndromes including autoimmune diseases such as fibromyalgia, and other maladies. Currently, research is finally linking the neuronal mechanisms involved in pain modulation to the chiropractic adjustment.

 

The key is utilizing the chiropractic spinal adjustment in balancing the autonomic nervous system and in turn helping to rectify the hypothalamus – pituitary – adrenal gland imbalance as a viable treatment modality. In conclusion, it is the neuro-endocrine pathway research that has the ability to bring chiropractic full circle into proving objectively and scientifically what we have observed for 120 years.  We can also never lose sight that these finding are just a beginning, requiring more research and more answers to help providers create more specific treatment plans an offer more options for patients suffering with fibromyalgia and other maladies.

 

As with all of our articles from here forward, I would like to leave you with a last and seemingly unrelated statement.  I felt it was important to add this at the end since many of our critics negatively portray the safety of chiropractic care.  This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified” (Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

 

References:

  1. Fibromyalgia, Mayo Clinic (2016), Retrieved from: http://www.mayoclinic.org/diseases-conditions/fibromyalgia/basics/symptoms/con-20019243
  2. 2.Studin, M., Owens, W., Zolli, F. (2015).Chiropractic, chronic back pain and brain shrinkage: A better understanding of Alzheimer’s, dementia, schizophrenia, depression and cognitive disorders and chiropractic’s role, A literature review of the mechanisms. The American Chiropractor, 37
  3. Kovanur Sampath, K., Mani, R., Cotter, J. D, & Tumilty, S. (2015). Measurable changes in the neuro-endocrine mechanism following spinal manipulation]. Medical Hypothesis, 85, 819-824
  1. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

 

Dr. Mark Studin is an Adjunct Associate Professor of Chiropractic at the University of Bridgeport College of Chiropractic, an Adjunct Professor of Clinical Sciences at Texas Chiropractic College and a clinical presenter for the State of New York at Buffalo, School of Medicine and Biomedical Sciences for post-doctoral education, teaching MRI spine interpretation and triaging trauma cases. He is also the president of the Academy of Chiropractic teaching doctors of chiropractic how to interface with the legal community (www.DoctorsPIProgram.com), teaches MRI interpretation and triaging trauma cases to doctors of all disciplines nationally and studies trends in healthcare on a national scale (www.TeachDoctors.com). He can be reached at This email address is being protected from spambots. You need JavaScript enabled to view it. or at 631-786-4253.

Dr. Bill Owens is presently in private practice in Buffalo and Rochester NY and generates the majority of his new patient referrals directly from the primary care medical community.  He is an Associate Adjunct Professor at the State University of New York at Buffalo School of Medicine and Biomedical Sciences as well as the University of Bridgeport, College of Chiropractic and an Adjunct Professor of Clinical Sciences at Texas Chiropractic College.  He also works directly with doctors of chiropractic to help them build relationships with medical providers in their community. He can be reached at This email address is being protected from spambots. You need JavaScript enabled to view it. or www.mdreferralprogram.com or 716-228-3847  

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic’s Mechanism in Pain Modulation and the Connection to Systemic Diseases

 

A Literature Review and Synthesis on the Possible Effects of Chiropractic on Cancers, Systemic Diseases, Mental and Social Disorders and Sexual Behavior

A report on the scientific literature 


 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 William J. Owens DC, DAAMLP

 -----

Citation: Studin M., Owens W. (2016) Chiropractic’s Mechanism in Pain Modulation and the Connection to Systemic Disease, Dynamic Chiropractor 34(3) 26-33

 

Chiropractors for over a century have been called “quacks” and “charlatans” for reporting what they have observed in their patients as a result of their care. The maladies that chiropractors have witnessed the disappearance of include cancers, eczema, infertility, high blood pressure, diabetes, arthritis, emotional disturbances and many more. Historically, this has brought the “ire” of organized medicine and other splinter groups to attack the chiropractic profession with the mantra of “there is no scientific evidence” to support these allegations. One author of this paper, Dr Studin, has spent 35 years experiencing this phenomenon where patients reported the aforementioned maladies and a long list of other diseases which “miraculously” disappeared with treatment.

 

 

To be clear, this wasn’t an isolated instance, but rather year after year that and in meetings with other chiropractor’s similar stories were heard.  However, sharing these findings amongst chiropractors was much easier than sharing it with the healthcare community because of the persecution against chiropractors and the outcry of “quackery.” In fact, many of the chiropractic practitioners who witnessed these results felt the best way to approach this was to only discuss this with patients.  They purposefully avoided any other healthcare providers in these conversations because there was no scientific evidence to back up the repeated observations.

 

 

To the medical community, these were religious type beliefs and we, as chiropractors, were proselytizing our religion of chiropractic on patients and the community. Based on the lack of published evidence, their allegations against us was not without merit albeit misguided and fueled in part by economics. However, medicine saw beliefs based upon observations on the chiropractic side and medicine required published evidence for verification no matter the claims and testimonials from an ever-increasing segment of the public. Today, the benefits of chiropractic care have remained constant with the same stream of patients getting well. However, the evidence has now started to support these findings and the chiropractic profession has gone beyond proselytizing our beliefs to being able to cite specific research that supports and justifies chiropractic care as part of mainstream healthcare. We can now share our results, which are consistent with the scientific literature that often has been discovered or proven beyond the chiropractic profession.

 

 

NOTE: Although the following evidence verifies what our profession has been witnessing over the last decade, please understand that the research is just beginning to show evidence and much more is needed to bring our profession to where it needs to be. As a result, every practitioner and every chiropractic academic institution needs to both support and be involved in research. Our professional institutions and their research departments MUST take an active and serious role in producing and publishing research. Otherwise, it will come from another source such as osteopathy or physical therapy and prevent chiropractic from taking it’s unique place in healthcare.

 

Chiropractic Adjustment and Central Nervous System Changes

 

We have held for quite some time that studying how the adjustment works for the treatment of pain is the first step in truly understanding how the chiropractic adjustment affects systemic diseases. It has been shown that the chiropractic adjustment has a direct effect on many regions in the brain where pain mediation arises. As evidence, Reed, Pickar, Sozio, and Long (2014) reported:

…forms of manual therapy have been clinically shown to increase mechanical pressure pain thresholds (i.e., decrease pain sensitivity) in both symptomatic and asymptomatic subjects.Cervical spinal manipulation has been shown to result in unilateral as well as bilateral mechanical hypoalgesia [reduction in pain]. Compared with no manual therapy, oscillatory spinal manual therapy at T12 and L4 produced significantly higher paraspinal pain thresholds at T6, L1, and L3 in individuals with rheumatoid arthritis. The immediate and widespread hypoalgesia associated with manual therapy treatments has been attributed to alterations in peripheral and/or central pain processing including activation of descending pain inhibitory systems.

Increasing evidence from animal models suggests that manual therapy activates the central nervous system and, in so doing, affects areas well beyond those being treated. (p. 277)

 

 

Reed et al. (2014) continued stating, “Several clinical studies indicate that spinal manipulation [chiropractic spinal adjustment] alters central processing of mechanical stimuli evidenced by increased pressure pain thresholds and decreased pain sensitivity in asymptomatic and symptomatic subjects following manipulation” (p. 282).

 

In another paper, Gay, Robinson, George, Perlstein, and Bishop (2014) reported, “With the evidence supporting efficacy of MT [manual therapy or chiropractic spinal adjustments] to reduce pain intensity and pain sensitivity, it is reasonable to assume that the underlying therapeutic effect of MT is likely to include a higher cortical component” (p. 615).   The authors continued by stating, “…pain-free volunteers processed thermal stimuli applied to the hand before and after thoracic spinal manipulation (a form of MT).  What they found was that after thoracic manipulation, several brain regions demonstrated a reduction in peak BOLD [blood-oxygen-level–dependent] activity. Those regions included the cingulate, insular, motor, amygdala and somatosensory cortices, and the PAG [periaqueductal gray regions]” (Gay et al., 2014, p. 615).

 

The above two studies are only a small part of a growing body of evidence showing that the chiropractic spinal adjustment directly affects the functioning of the central nervous system and is the core of pain modulation with chiropractic care and the foundation to the next level, as outlined below. 

 

The Effect of the Chiropractic Adjustment on Neuropeptides (Neurotensin-Oxytocin-Cortisol)

NOOC Axis = Neurotensin-Orexin-Oxytocin-Cortisol

Regarding neuropeptides, Burbach (2011) reports:

We know neuropeptides now for over 40 years as chemical signals in the brain. The discovery of neuropeptides is founded on groundbreaking research in physiology, endocrinology, and biochemistry during the last century and has been built on three seminal notions: (1) peptide hormones are chemical signals in the endocrine system; (2) neurosecretion of peptides is a general principle in the nervous system; and (3) the nervous system is responsive to peptide signals. These historical lines have contributed to how neuropeptides can be defined today: “Neuropeptides are small proteinaceous substances produced and released by neurons through the regulated secretory route and acting on neural substrates.” Thus, neuropeptides are the most diverse class of signaling molecules in the brain engaged in many physiological functions. (p. 1)

 

 

Simply put, neuropeptides are the transmitters that allow the brain to communicate within itself and with the rest of the body’s functions. The increase or decrease of these neuropeptides/neurotransmitters alters human physiology (function) and any action upon the body that affects the neurotransmitters can either help normalize function or conversely destroy functioning with the human body.  This is the foundation of homeostasis and, therefore, if we can affect the function of neurotransmitters, then it is safe to say we can have a level of influence on homeostasis.  This obviously ties into our founder’s observations and the beginning of chiropractic! 

 

 

In an additional paper, Plaza-Manzano et al. (2014) wrote, “Several neuropeptides, such as neurotensin, oxytocin, or orexin A have been associated with hypoalgesia and pain modulation, and it is well known that cortisol plays an analgesic role related to stress responses. Recent theories have also suggested that chronic pain could be partly maintained by maladaptive physiological responses of the organism facing a recurrent stressor, a situation related to high cortisol levels” (p. 231). The authors continued by stating, “To make better therapeutic decisions, professionals would profit from knowing whether one type of SM (adjustment) is better than others in terms of antinociceptive (authors comment: antinociceptive = pain inhibition) effects (neurotensin, orexin A, oxytocin, and cortisol). Taking these data into account, our purpose was to determine whether cervical and thoracic manipulation would induce differences in neuropeptide production or have a similar biochemical response (Plaza-Manzano et al., 2014, p. 232).

 

 

Plaza-Manzano et al. (2014) went on to say “…within-group comparisons in cervical and thoracic manipulation groups showed a significant increase in neurotensin levels immediately post-intervention compared with pre-intervention levels… At the descriptive level, an important decrease in orexin A concentration was detected after the intervention in the thoracic SM (spinal manipulation) group in comparison with the control group… the cervical SM group showed increased oxytocin values when compared with the thoracic SM group immediately post-intervention (Plaza-Manzano et al., 2014, p. 234). At 2 hours after the intervention, an increase was found only in the cervical SM group when compared with pre-intervention levels… the cervical SM group showed a significant increase in cortisol plasma concentration immediately post-intervention compared with baseline values” (Plaza-Manzano et al. 2014, p. 235). 

 

 

Neurotensin

Orexin

Oxytocin

Cortisol

Cervical Adjustment

Increased levels

Not reported

Increased levels

Increased levels

Thoracic Adjustment

Increased levels

Increased levels

No Change

Significant Decrease at

2 hours

 

 

Regarding pain Plaza-Manzano et al. (2014) stated:

It is well established that neurotensin affects the activity of oxytocin-positive cells in the supraoptic nucleus. Oxytocin is a nonapeptide that plays a major neuroendocrine role, modulating several physiological functions in mammals, like somatosensory transmission, nociception, and pain. Oxytocin is synthesized and secreted by a subpopulation of the paraventricular and supraoptic nuclei of the hypothalamus. In fact, several studies now support the idea that oxytocin exerts a potent antinociceptive control after its release in the spinal cord from hypothalamo-hypophysal descending projections (from the brain) … In studies involving human subjects, pain relief was reported in central neurogenic pain and in low back pain after the intracerebroventricular and intrathecal administration of oxytocin (aka pharmaceutical intervention). No previous study has evaluated whether SM has an effect on oxytocin plasmatic concentration. Our results suggest that the increase of the plasmatic concentration of oxytocin following an SM could be partly responsible for the analgesic effect linked to manual therapy techniques due to the activation of descending pain-inhibitory pathways. Orexins are known to be a hypothalamic peptide critical for feeding and normal wakefulness...Orexinergic projections were identified in periaqueductal gray matter, the rostral ventral medulla, the dorsal horn, and the dorsal root ganglion. Emerging evidence shows that the central nervous system administration (intracranial ventricle or intrathecal injection) of orexin A can suppress mechanical allodynia and thermal hypersensitivity in multiple pain models, suggesting the regulation of nociceptive processing via spinal and supraspinal mechanisms. In addition, orexins showed antinociceptive effects on models of pain, such as neuropathic pain, carrageenan test, and postoperative pain… Cortisol is therefore one of the biochemical factors delivered in stress situations that acts to decrease local edema and pain by blocking early stages of inflammation. In addition, it is also believed that high cortisol levels promote wound healing by stimulating gluconeogenesis. The response to stress is triggered by the stimulation of the hypothalamus-pituitary-adrenal axis. It has been proven that a subject’s level of stress can be correlated with secreted cortisol levels. (p. 236) 

 

 

The above study explains the neurochemical mechanism through which pain in mediated via the chiropractic spinal adjustment. Many of the pharmacological and nutraceutical interventions also target these systems through a variety of measures, some with significant negative side-effects.  Next, let’s examine what control these neuropeptides have in the human body beyond pain control. This will begin to explain the systemic connection with the chiropractic adjustment.

 

Systemic Effect of the Chiropractic Adjustment by Increasing of the NOC Axis

 

According to St-Gelais, Jomphe and Trudeau (2006), “…we focus our attention on the roles of NT [neurotensin] in the CNS. However, it is important to point out that this peptide is also highly expressed peripherally where it acts as a modulator of the gastrointestinal and cardiovascular systems” (p. 230). These authors discussed the role of antipsychotic drugs in cases of schizophrenia and how it was used to elevate the neurotensin level.  They found it would promote partial recovery while an additional study revealed that unmediated patients displayed a lowering of neurotensin.

 

An increase in neurotensin acts as a psychostimulant. A study conducted over the course of 25 years on individuals with drug abuse issues showed that increasing neurotensin levels decreased effects of psychostimulants such as amphetamines and cocaine. This study on drug addiction, according to St-Gelais et al. (2006), was conducted on animals, but there are many in chiropractic who have reported on a case-by-case basis that integrating chiropractic has helped many with drug abuse issues. Perhaps what this article suggests can help find more answers.

 

 

St-Gelais et al. (2006) also found a strong connection with a decrease in neurotensin in the following:

 

  1. Schizophrenia
  2. Gastrointestinal function
  3. Cardiac function
  4. Parkinson’s disease
  5. Elevated blood pressure
  6. Eating disorders
  7. Cancer of the
    1. Colon
    2. Lungs
    3. Ovaries
    4. Pancreas
    5. Prostate
    6. Bones
    7. Brain
  8. Alzheimer’s
  9. Stroke (ischemic deaths)
  10. Inflammation

 

Although the literature has not yet conclusively shown that any one of the central nervous system conditions are causally involved with the reduction of neurotensin, the literature strongly suggest that it plays a significant role. There is definitely a common denominator in neurotensin levels and these seemingly uncorrelated conditions.

 

Orexins, also known as hypocretins, according to Ebrahim, Howard, Kopelman, Sharief and Williams (2002) have an important role in sleep and (mental) arousal states. They state, “The hypocretins are thought to act primarily as excitatory neurotransmitters…suggesting a role for the hypocretins in various central nervous functions related to noradrenergic innervation, including vigilance, attention, learning, and memory. Their actions on serotonin, histamine, acetylcholine and dopamine neurotransmission is also thought to be excitatory and a facilitatory role on gamma-aminobutyric acid (GABA) and glutamate-mediated neurotransmission is suggested” (p. 227).

 

Ebrahim et al. (2002) continued:

Apart from their primary role in the control of sleep and arousal, the hypocretins have been implicated in multiple functions including feeding and energy regulation, neuroendocrine regulation, gastrointestinal and cardiovascular system control, the regulation of water balance, and the modulation of pain. A role in behaviour is also postulated. The cell bodies responsible for hypocretin synthesis are localized to the tuberal part of the hypothalamus, the so-called feeding centre...[which] has led to the suggestion that the hypocretins are mediators of energy metabolism. The neuroendocrine effects of the hypocretins include a lowering of plasma prolactin and growth hormone and an increase in the levels of corticotropin and cortisol, insulin and luteinizing hormone. Central administration of the hypocretins increases water consumption, stimulates gastric acid secretion and increases gut motility. The hypocretins increase mean arterial blood pressure and heart rate. The localization of long descending axonal projections containing hypocretin at all levels of the spinal cord suggests a role in the modulation of sensation and pain. Strong innervation of the caudal region of the sacral cord suggests a role in the regulation of both sympathetic and parasympathetic functions. (p. 227-228)

 

According to Lee, Macbeth, Pagani and Young (2009), oxytocin is a product of the hypothalamus and pituitary and according to Plaza-Manzano et al. (2014) it has been linked to the endogenous synthesis of opioids, thereby adding further explanation to the antinociceptive effects in the reduction of pain centrally. This partially explains the pain mechanism of the chiropractic adjustment.

 

 

For non-pain actions of oxytocin, beyond the actions of uterine contractions and lactation (You remember that board question, right?), Lee et al. (2009) reported that oxytocin is integral in:

 

  1. Social memory
  2. Social bonding
  3. Parental behavior
  4. Human behavior
  5. Sexual behavior
  6. Social behaviors (i.e. aggression)
  7. Learning
  8. Memory (overall)
  9. Anxiety
  10. Eating behavior
  11. Sugar metabolism

 

Willenberg et al. (2000) reported, “Corticotropin-releasing hormone (CRH) and its receptors are widely expressed in the brain and peripheral tissues. This hormone is the principal regulator of the hypothalamic-pituitary-adrenal (HPA) axis and exerts its effects via two main receptor subtypes, type 1 (CRH-R1) and 2 (CRH-R2). CRH also activates both the adrenomedullary and systemic sympathetic system limbs and an intraadrenal CRH/ACTH/cortisol system…” (p. 137).

 

According to Smith and Vale (2006) “The principal effectors of the stress response are localized in the paraventricular nucleus (PVN) of the hypothalamus, the anterior lobe of the pituitary gland, and the adrenal gland. This collection of structures is commonly referred to as the hypothalamic-pituitary-adrenal (HPA) axis...In addition to the HPA axis, several other structures play important roles in the regulation of adaptive responses to stress. These include brain stem noradrenergic neurons, sympathetic adrenomedullary circuits, and parasympathetic systems” (pgs. 383-384) 

 

 

Smith and Vale (2006) also reported the following function of the HPA axis that has a direct control by corticotropin-releasing hormones:

  1. Autonomic nervous system function
  2. Learning
  3. Memory
  4. Feeding
  5. Reproduction related behaviors
  6. Metabolic changes
  7. Cardiovascular regulation
  8. Immune system

In addition, Willenberg et al. (2000) added the following”

  1. Mental disorders
  2. Depression
  3. Schizophrenia

 

Conclusion

 

For over a century, chiropractic patients have been reporting the “miracles” of the results rendered in chiropractic offices worldwide and yet chiropractors have been persecuted and often vilified by the medical profession due to the lack of scientific evidence. Although this is a very broad perspective of the potential of the chiropractic care, it is now virtually impossible to ignore the fact that the chiropractic adjustment affects changes in neuropeptides in blood sample post-adjustment. These blood markers verify that changes are made in the human body and these changes have far reaching effects on both wellness and disease care. Medicine has been attempting to reproduce these effects via pharmaceutical intervention and a part of the solution now has to be chiropractic care based upon the evidence reported. 

This is just the beginning, as more evidence is needed to verify the full effects of the chiropractic spinal adjustment. We have a lot of work to do, but the scientific foundation of what chiropractors have observed since our beginning is getting stronger every month as more research is published.  

We would like to leave you with a last and seemingly unrelated statement.  We felt it was important to add this at the end since many of our critics negatively portray the safety of chiropractic care.  This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

References:

1. Reed, W. R., Pickar, J. G., Sozio, R. S., & Long, C. R. (2014). Effect of spinal manipulation thrust magnitude on trunk mechanical activation thresholds of lateral thalamic neurons.Journal of Manipulative and Physiological Therapeutics, 37(5), 277-286.

2. Gay, C. W., Robinson, M. E., George, S. Z., Perlstein, W. M., & Bishop, M. D. (2014). Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain.Journal of Manipulative and Physiological Therapeutics, 37(9), 614-627.

3. Burbach, J. P. (2011). What are neuropeptides? In J. Walker (Ed.),Methods in molecular biology (pp. 1-36). Clifton, New Jersey: Humana Press.

4. Plaza-Manzano, G., Molina-Ortega, F., Lomas-Vega, R., Martinez-Amat, A., Achalandabaso, A., & Hita-Contreras, F. (2014). Changes in biochemical markers of pain perception and stress response after spinal manipulation.Journal of Orthopedic and Sports Physical Therapy, 44(4), 231-239.

5. St-Gelais, F., Jomphe C., & Trudeau, L. (2006). The role of neurotensin in central nervous system pathophysiology: What is the evidence?Journal of Psychiatry & Neuroscience,31(4) 229-245.

6. Ebrahim, I. O., Howard, R. S., Kopelman, M. D., Sharief, M. K., & Williams, A. J. (2002). The hypocretin/orexin system.Journal of the Royal Society of Medicine,95(5), 227-230.

7. Lee, H. J., Macbeth, A. H., Pagani, J. H., & Young, W. S. (2009). Oxytocin: The great facilitator of life.Progressive Neurobiology, 88(2), 127-151.

8. Willenberg, H. S., Bornstein, S. R., Hiroi, N., Path, G., Goretzki, P. E., Scherbaum, W. A., & Chorusos, G. (2000). Effects of a novel corticotropin-releasing-hormone receptor type I antagonist on human adrenal function.Molecular Psychiatry, 5(2), 137-141.

9. Smith, S. M., & Vale, W. W. (2006). The role of hypothalamic-pituitary-adrenal axis neuroendocrine response to stress.Dialogue in Clinical Neuroscience, 8(4), 383-395.

10. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Dr. Mark Studin is an Adjunct Associate Professor of Chiropractic at the University of Bridgeport College of Chiropractic, an Adjunct Professor of Clinical Sciences at Texas Chiropractic College and a clinical presenter for the State of New York at Buffalo, School of Medicine and Biomedical Sciences for post-doctoral education, teaching MRI spine interpretation, spinal biomechanical engineering and triaging trauma cases. He is also the president of the Academy of Chiropractic teaching doctors of chiropractic how to interface with the medical and legal communities (www.DoctorsPIProgram.com), teaches MRI interpretation and triaging trauma cases to doctors of all disciplines nationally and studies trends in healthcare on a national scale (www.TeachDoctors.com). He can be reached at This email address is being protected from spambots. You need JavaScript enabled to view it. or at 631-786-4253.

 

 

Dr. Bill Owens is presently in private practice in Buffalo and Rochester NY and generates the majority of his new patient referrals directly from the primary care medical community.  He is an Associate Adjunct Professor at the State University of New York at Buffalo School of Medicine and Biomedical Sciences as well as the University of Bridgeport, College of Chiropractic and an Adjunct Professor of Clinical Sciences at Texas Chiropractic College.  He also works directly with doctors of chiropractic to help them build relationships with medical providers in their community. He can be reached at This email address is being protected from spambots. You need JavaScript enabled to view it. or www.mdreferralprogram.com or 716-228-3847  

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Saturday, 23 January 2016 18:00

Increased Immunity Linked to Chiropractic Care

Written by

Chiropractic Linked to Increased Immunity

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

 

From the public’s perspective, we all want to be well and not sick. During the winter months we fear the flu and colds and according to American Public Media (2016) we spend over $40 billion dollars annually just to feel better. Whether that number is accurate, underinflated or overinflated, we can all agree that as a society we spend a significant amount of money just to feel better and not to actually be better. The new buzzword over the last decade has been “wellness” and even hospitals are touting to focus on wellness although most MD’s who staff those hospitals have little to no training in wellness vs. disease care.

 

Personally, I welcome those highly trained MD’s who focus on disease care and our society desperately needs every one of them who is helping to successfully treat sick patients. However, medicine has failed at the “wellness game” and we are starting to see “functional medicine” practitioners who use holistic measures such as vitamins, herb, minerals and other natural means and most are not doctors of medicine, but practitioners who understand that wellness does not necessitate the use of pharmaceuticals. The goal of wellness is to increase our immune system to increase our immunity to various viruses and bacterial causing diseases in part of an overall health plan.

 

According to Wikipedia (2016) “In biology,immunity is the balanced state of having adequate biological defenses to fighting infection,disease, or other unwanted biological invasion, while having adequatetoleranceto avoidallergy, andautoimmune diseases. It is the capability of the body to resist harmfulmicroorganismsorvirusesfrom entering it. Immunity involves both specific and nonspecific components. The nonspecific components act either as barriers or as eliminators of wide range of pathogens irrespective of antigenic specificity. Other components of theimmune systemadapt themselves to each new disease encountered and are able to generate pathogen-specific immunity.” (https://en.wikipedia.org/wiki/Immunity_(medical)

 

According to Jeffries (1991) “The relationship between adrenocortical function and immunity is a complex one. In addition to the well-known detrimental effects of large, pharmacologic dosages of glucocorticoids upon the immune process, there is impressive evidence that physiologic amounts of cortisol, the chief glucocorticoid normally produced by the human adrenal cortex, is necessary for the development and maintenance of normal immunity.” Although many scholarly articles explain the connection between cortisol and the immune system, The Adrenal Fatigue Solution (2016) articulates it well “The hormones produced by your adrenal glands, particularly the stress hormone cortisol, play an important role in regulating your immune system. If your cortisol levels go too low or too high, this can lead to regular infections, chronic inflammation, autoimmune diseases or allergies. Maintaining a balanced level of cortisol is an important part of staying healthy." (http://adrenalfatiguesolution.com/immune-system/)


One of cortisol’s many functions is to reduce inflammation. When your body encounters a pathogen, the immune system responds by quickly attacking it. This causes inflammation, which is often a good thing (it means the immune system is working). In those with healthy immune and endocrine systems, cortisol works to moderate the inflammation caused by an immune system response, but it does not completely eliminate it.”

 

Research done at the University of Madrid Medical School in Madrid Spain and the Department of Health Sciences at the University of Jaen Spain, Plaza-Manzano (2014) and fellow researchers found a link between immunity and chiropractic care. They were studying manipulation, or what chiropractors do when we adjust our patients and the cause for eradication of pain. They concluded that certain neuropeptides, or transmitters in the brain increase when our patients get adjusted. The specific neurotransmitter is called cortisol and according to Smith and Vale (2006) “The principal effectors of the stress response are localized in the paraventricular nucleus (PVN) of the hypothalamus, the anterior lobe of the pituitary gland, and the adrenal gland. This collection of structures is commonly referred to as the hypothalamic-pituitary-adrenal (HPA) axis...In addition to the HPA axis, several other structures play important roles in the regulation of adaptive responses to stress. These include brain stem noradrenergic neurons, sympathetic adrenomedullary circuits, and parasympathetic systems” (pgs. 383-384) . Smith and Vale also reported that balanced cortisol is important in the maintenance of the immune system.

 

It was reported that post-chiropractic adjustment (high velocity, low amplitude spinal manipulation: SM), at 2 hours after the intervention, an increase was found only in the cervical SM group when compared with pre-intervention levels… the cervical SM group showed a significant increase in cortisol plasma concentration immediately post-intervention compared with baseline values” (Plaza-Manzano et al. 2014, p. 235). This verifies that chiropractic care has a direct link to the cortisol-immunity connection through the neuro-endocrine reaction.

 

I would like to leave you with a last and seemingly unrelated statement. Our research team felt it is important to add this at the end since many of our critics negatively portray the safety of chiropractic care. This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

 

References:

 

  1. The Cost of the Common Cold, American Public Media (2016), Retrieved from: http://www.marketplace.org/2011/01/21/life/cost-common-cold
  2. Immunity (2016) Retrieved from: https://en.wikipedia.org/wiki/Immunity_(medical)
  3. Jeffries W., (1991) Cortisol and Immunity, Medical Hypothesis, 34, 198-208
  4. Adrenal Fatigue and Your Immune System (2016). Retrieved from: http://adrenalfatiguesolution.com/immune-system/
  5. Plaza-Manzano, G., Molina-Ortega, F., Lomas-Vega, R., Martinez-Amat, A., Achalandabaso, A., & Hita-Contreras, F. (2014). Changes in biochemical markers of pain perception and stress response after spinal manipulation. Journal of Orthopedic and Sports Physical Therapy, 44(4), 231-239.
  6. Smith, S. M., & Vale, W. W. (2006). The role of hypothalamic-pituitary-adrenal axis neuroendocrine response to stress. Dialogue in Clinical Neuroscience, 8(4), 383-395.
  7. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Research Chiropractic Conditions

The US Chiropractic Directory will only post information about chiropractic that has been proven in a published research setting
Total Research Hits: 19,225,341


                                                          Since June 2012
Web traffic validated by U.S. Digital Sciences Corporation
Validation Method Click Here

TitleHits
Sleep Disorder Improvements Have Been Linked to Chiropractic Care 6034
Chiropractic Spinal Adjustments, Changes in Organ Systems & Treatment of Disease THE BRAIN CONNECTION 7647
Chiropractic has a Positive Effect on Depression and Anxiety: The Brain Connection 4763
Neck Pain (Torticollis), Headaches, Dizziness, Radiating Pain, Nausea, depression, Confusion, Ringing in the Ears Show Good Outcomes With Chiropractic Care 6582
Page 2 of 3

More Research